Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные термодинамические процессы и циклы

Глава 5. Основные термодинамические процессы и циклы  [c.6]

ГЛАВА 5. ОСНОВНЫЕ ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ И ЦИКЛЫ  [c.158]

В первой части книги налагаются основные законы термодинамики и их приложение к анализу термодинамических процессов и циклов тепловых двигателей и холодильных установок. Рассматриваются свойства пара и влажного воздуха, термодинамика потока п современные методы анализа циклов.  [c.2]


Первая часть учебника (главы 1...5) посвящена изложению основных положений и законов термодинамики и их применению при анализе различных термодинамических процессов и циклов теплосиловых установок.  [c.12]

Таким образом, эксергетический анализ применяется для решения двух основных задач. Первая — установление максимальных термодинамических возможностей и вычисление безвозвратных потерь эксергии в результате необратимости процессов и циклов вторая — обоснование рекомендаций по их совершенствованию.  [c.43]

Двигатель Стирлинга представляет собой преобразователь энергии, относящийся к типу тепловых двигателей, совершающих механическую работу на выходном валу при подводе к ним тепловой энергии. Полезная работа в рабочем цикле Стирлинга совершается, как и в других тепловых двигателях, посредством сжатия рабочего тела при низкой температуре и расширения того же рабочего тела после нагрева при более высокой температуре. Основные термодинамические процессы, про-  [c.16]

Наиболее просто идеальный цикл Карно может быть изображен в системе координат T-S (т. е. температура— энтропия). Основным свойством диаграммы, построенной в таких координатах, является возможность изображения количества тепла в виде площади, ограниченной линией термодинамического процесса и осью абсцисс. Как показывает рис. 1-1, цикл Карно в Г- -диаграмме имеет форму прямоугольника Н—0—К—Г. Количе-  [c.11]

В первой части учебного пособия кратко изложены исторические данные, показана роль, которую играли русские и советские ученые в развитии основных положений теоретической теплотехники. Подробно рассмотрены основные законы термодинамики, термодинамические процессы, дифференциальные уравнения термодинамики и истечение газов и паров. В прикладной части рассмотрены циклы двигателей внутреннего сгорания, газотурбинных и паротурбинных установок, а также циклы атомных электростанций,  [c.3]

В первой части учебника излагаются основные законы термодинамики, термодинамические процессы, реальные газы и пары, рассматриваются циклы двигателей внутреннего сгорания, газотурбинных установок и реактивных двигателей даются основные положения химической термодинамики, необходимые для построения теории горения.  [c.3]


Классическая термодинамика является мощным средством исследования обратимых процессов. И метод циклов, и метод термодинамических потенциалов позволяют получить основные закономерности термодинамических процессов, не вскрывая их молекулярного механизма.  [c.234]

Основными термодинамическими признаками различия поршневых ДВС и газотурбинных двигателей — ГТУ и РД являются особенности осуществления, в них круговых процессов. В поршневых двигателях основные процессы цикла (сжатие подвод теплоты, расширение) последовательно происходят в одном и том же замкнутом пространстве (система цилиндр — поршень), а в газотурбинных двигателях те же процессы непрерывно осуществляются в потоке рабочего тела, проходящего через отдельные последовательно расположенные элементы двигателя (компрессор, камера сгорания, турбина).  [c.132]

Мы рассматривали значения основных термодинамических характеристик прямых и обратных циклов (величины т)г, е и ф) в случае вполне обратимого протекания процессов, т. е. при соблюдении внешней и внутренней обратимости.  [c.22]

В раздел включены таблицы термодинамических свойств основных рабочих веществ воды и водяного пара, воздуха, углекислого газа, азота, аммиака и др. При этом сведения о свойствах воды и водяного пара даны в соответствии с Международной системой уравнений 1997 г для промышленного использования, применяющейся с 1 января 1999 г во всех развитых странах. Данные для других веществ соответствуют действующим стандартам. В этот раздел также включены сведения по термодинамическим процессам, циклам паротурбинных и газотурбинных энергетических установок, дан их анализ. Для сложных термодинамических систем, совершающих помимо работы расширения и другие виды работ, даны соотношения, необходимые для их расчета и анализа.  [c.8]

Установление количественных соотношений между динамикой тепловыделения и к. п. д. рабочего цикла сводится к определению связей между законом ввода тепла в термодинамический цикл, описывающий рабочий процесс, и площадью этого цикла, так как характеристика тепловыделения Я акт = /( У) и есть закон ввода тепла в цикл, а площадь цикла в р-г -координатах определяет работу и основные показатели цикла.  [c.280]

В книге изложены основные законы термодинамики. Рассмотрены уравнения состояния идеальных и реальных газов. Особое место уделено изложению метода исследования термодинамических процессов, термодинамики газового потока и циклам двигателей внутреннего сгорания.  [c.2]

Замкнутые теоретические циклы (см. 6) дают наглядное представление о протекании процессов в реальных двигателях и о характере изменения их основных показателей (11 и р ) в зависимости от различных термодинамических факторов. Однако количественные показатели замкнутых теоретических циклов далеки от реальных и прежде всего потому, что не учитывают трех основных процессов, протекающих в любом реальном двигателе.  [c.35]

Третье издание учебника имеет следующее построение курса. Часть первая Основные законы термодинамики . Гл, 1 Введение гл, 2 Первое начало термодинамики гл. 3 Второе начало термодинамики (сущность второго начала термодинамики интегрирующий делитель для выражения элементарного количества тепла энтропия аналитическое выражение второго начала термодинамики полезная внешняя работа термодинамические потенциалы и характеристические функции тепловая теорема Нернста дифференциальные уравнения термодинамики в частных производных статистическое толкование второго начала термодинамики) гл. 4 Термодинамическое равновесие гл. 5 Термодинамические процессы гл. 6 Газы и их смеси гл. 7 Насыщенные влажные и перегретые пары гл. 8 Течение газов и паров гл. 9 Общий термодинамический метод анализа циклов тепловых двигателей . Часть вторая Рабочие циклы тепловых двигателей . Гл. 10 Сжатие газов и паров гл. 11 Циклы поршневых двигателей внутреннего сгорания гл. 12 Циклы газотурбинных установок и реактивных двигателей гл. 13 Циклы паросиловых установок гл. 14 Циклы холодильных машин гл. 15 Термодинамические принципы получения теплоты гл. 16 Термодинамика химических реакций .  [c.349]


Раздел 2 — Термодинамика квазистатических (обратимых) процессов и состояний равновесия (обратимые изотермические процессы свободная энергия системы математические теоремы об интегрирующем множителе линейных форм в полных дифференциалах основное уравнение термодинамики обратимых процессов энтропия равенство Клаузиуса следствия основного уравнения термодинамики обратимых процессов, относящиеся к равновесным состояниям общие формулы, относящиеся к свободной энергии абсолютная термодинамическая температурная шкала цикл Карно следствия второго начала,. касающиеся обратимых процессов расширения и нагревания газа или жидкости связь эффекта Джоуля—Томсона с уравнением состояния применение этого эффекта для охлаждения газов магнитный метод охлаждения термодинамика гальванического элемента равновесное излучение закон Кирхгофа закон Стефана—Больцмана для равновесного излучения характеристические функции).  [c.364]

Из этих допущений следует, что значения к. п. д. теоретических циклов выше, чем значения к. п. д. у соответствующих реальных двигателей. Однако при помощи теоретических циклов можно выяснить влияние основных термодинамических факторов на процесс преобразования теплоты в механическую работу, а также произвести сравнения различных циклов с точки зрения их эффективности и экономичности.  [c.8]

Газотурбинные установки, схемы которых показаны на рис. 77, а и б, состоят из собственно газовой турбины, имеющей две основные части вращающийся диск с радиальными лопатками И, называемый ротором, и корпус 2, называемый статором. На общем валу с ротором располагается потребитель энергии / и турбокомпрессор 3, сжимающий воздух и подающий его по трубопроводу 8 в камеру сгорания 9. В эту же камеру по трубопроводу 6 топливным насосом 5 из бака 4 подается топливо, которое через форсунку (клапан) 7 впрыскивается в камеру сгорания 9. Газ, образующийся в результате сгорания топлива в камере 9, подается в сопловый аппарат 10. В сопловом аппарате скорость движения газа увеличивается. После соплового аппарата газ, имеющий высокую кинетическую энергию, попадает в канал между лопатками ротора, где и совершается работа вследствие образующегося давления газа на вогнутую поверхность лопаток. Давление создает силу, вращающую ротор. Отработавшие газы выпускаются через патрубок 12. Цикл газотурбинной установки состоит из термодинамических процессов, происходящих в турбокомпрессоре 3, камере сгорания 9 и в самой турбине П.  [c.207]

В первом разделе учебного пособия изложены основные законы термодинамики и их приложения к расчету свойств газов и термодинамических процессов. Последовательно рассмотрены первое начало термодинамики, параметры состояния и уравнения состояния газа, теплоемкость газа, второе начало термодинамики. Дан термодинамический анализ теоретического цикла Карно, термодинамических циклов поршневого двигателя внутреннего сгорания и газотурбинного двигателя.  [c.2]

В книге изложены основные положения технической термодинамики и теплопередачи, знание которых необходимо для понимания принципов работы теплотехнического оборудования. Рассмотрены первый и второй законы термодинамики, термодинамические процессы, циклы двигателей внутреннего сгорания и паротурбинных установок, истечение и дросселирование газов и паров. Изложены основы переноса теплоты теплопроводностью, конвекцией и излучением. Книга снабжена справочными таблицами и расчетными примерами.  [c.2]

Книга состоит из двух частей первая посвящена технической термодинамике, вторая—теплопередаче. В первой части рассматриваются основные понятия, первое и второе начала термодинамики, термодинамические процессы идеальных и реальных газов, циклы двигателей внутреннего сгорания, паротурбинных установок и компрессоров, процессы истечения газов. Во второй части освещены вопросы переноса теплоты теплопроводностью, конвекцией и излучением, метод подобия и основы теплового расчета теплообменников. При изложении материала авторы старались обращать особое внимание на физическую сущность изучаемых явлений, формировать у учащихся научное понимание основ теплотехники и прививать им практические навыки в решении задач прикладного характера. При этом авторы исходили из того, что изучение теоретических основ теплотехники должно предшествовать изучению специальных курсов, посвященных парогенераторам, паротурбинным установкам, автоматизации тепловых процессов, эксплуатации теплоэнергетических установок.  [c.3]

Анализ работы тепловых двигателей, выявление основных факторов, влияющих на экономичность, сравнение между собой таких двигателей возможно при рассмотрении идеальных циклов. Это замкнутые и обратимые циклы, в которых отсутствуют какие-либо потери энергии, не обусловленные согласно второму закону термодинамики необходимостью отдачи теплоты холодному источнику. Рабочим телом является идеальный газ, количество, теплоемкость и химический состав которого в цикле не изменяются. В основе работы тепловых двигателей лежит прямой тепловой цикл, состоящий из термодинамических процессов, при которых линия расширения лежит выше линии сжатия и обусловливает получение положитель-  [c.257]


В двигателях внутреннего сгорания (д.в.с.) два основных рабочих процесса, входящих в их теоретический термодинамический цикл, а именно сгорание топлива (подвод теплоты) и преобразование тепловой энергии продуктов сгорания в механическую работу (расширение газов) осуществляются в одном месте — внутри рабочего цилиндра. Именно поэтому машины такого типа называют двигателями внутреннего сгорания — в отличие от паросиловых установок (паровозов, тепловых электростанций), в которых сгорание топлива осуществляется вне двигателей.  [c.63]

Мероприятия по снижению токсичности и шумности турбинных установок. Основными токсичными веществами, выбрасываемыми в атмосферу ПТУ и ГТУ, являются продукты полного сгорания (окислы серы 80г и зола) и неполного (окись углерода СО, сажа и углеводороды НС), а также окислы азота N0 , образующиеся при высоких температурах горения. Поскольку термодинамический цикл ПТУ замкнут, то токсичные вещества выбрасываются в атмосферу только в топках паровых котлов. В мощных паротурбинных блоках современных электростанций осуществляется процесс сгорания топлива с полнотой, близкой к 100%. Блоки оборудованы золоуловителями, имеющими КПД 95 — 99%. Поэтому даже при сжигании угля и мазута доля ПТУ в общем загрязнении среды сравнительно невелика, а выбросы в основном представляют собой БОа и NO, Наиболее сложным оказывается предупреждение выбросов соединений серы. Способы очистки продуктов сгорания или топлива от серы имеют высокую стоимость и не нашли широкого использования. Радикальным возможным путем решения этой задачи является газификация угля или мазута и очистка газа  [c.218]

С целью проверки и обоснования основных положений термодинамической теории впервые проведены комплексные экспе-ри.ментальные исследования кинетики изменения составляющих энергетического баланса процесса повреждаемости и закономерностей усталостного разрушения металлов при симметричном цикле осевого растяжения — сжатия в широком диапазоне амплитуд циклических напряжений [4, 8]. Получены суммарные, относительные и удельные (отнесенные к единице деформируемого объема материала) термодинамические характеристики процесса, дающие богатую и ценную информацию о физической природе и механизмах процесса усталостного разрушения металлов.  [c.90]

Ранние исследовательские работы, проводившиеся в связи с применением подогрева питательной воды отработанным паром, не могли опираться на точные сведения о свойствах водяного пара, а также на сколь-нибудь широкий практический опыт применения регенеративных процессов. Скудные сведения о свойствах водяного пара объяснялись низкими параметрами пара (3—5 ата), применяемыми в то время. Отсутствие данных о термодинамических свойствах водяного пара не позволяло исчерпывающе анализировать регенеративный цикл. И. А. Вышнеградский, Цейнер, Ренкин и другие исследователи регенеративных циклов, упрощая задачу и рассматривая идеализированные схемы регенерации, пришли к правильным выводам для этих упрощенных схем. Ими была доказана возможность сохранения основных преимуществ цикла Ренкина — сжатие не в компрессоре, как это необходимо в цикле С. Карно для насыщенного пара, а в насосе. При этом путем введения регенеративного подогрева питательной воды оказалось возможным для идеальных циклов получить такую же величину к. п. д., как и для цикла С. Карно. Этот этап работы, продолжавшийся и в первой четверти XX в., характерен изучением регенеративного цикла с его качественной стороны, путем  [c.44]

Термодинамические циклы сопоставляемых схем ПТУ, используемые при построении математических моделей первого уровня, представлены на рис. 9.1 и 9.2. Эти циклы в основном идентичны циклам, приведенным на рис. 2.2 и 2.3 соответственно, за исключением того, что на последних показаны отдельные составляющие процесса торможения потока в конденсирующем инжекторе, а на рис. 9.1 и 9.2 этот процесс изображен адиабатой  [c.158]

В первой части пособия излагаются основные понятия и законы термодинамики, термодинамические свойства рабочих тел, анализ термодинамических процессов и циклов. Рассматриваются циклы тепловых двигателей и холодильных машин, приводится эксерготический анализ эффективности тепломеханических систем. Во второй части описываются явления теплопроводности, конвективного теплообмена и теплового излучения, даются основы теплового расчета теплообменных аппаратов. Изложение математической теории теплообмена и теории подобия в начале второй части пособия позволило обеспечить единый подход к рассмотрению задач теплопроводности и конвективного теплообмена и избежать повторений.  [c.6]

Энтальпия имеет большое значение. Введение в термодинамику этого параметра значительно упрощает многие расчеты газовых процессов и циклов и дает возможность примеиить графический способ изучения термодинамических процессов и циклов. Известно, что графический способ расчета почти во всех областях науки и техники применяется с большим успехом, в том числе и при расчетах газовых и паровых процессов и циклов. Энтальпией особенно целесообразно пользоваться тогда, когда в виде основных параметров принимают р и Г, а не U и Г. Это наглядно можно видеть, если энтальпию i сравнить с внутренней энергией и. Так, например, известно, что при V"= onst процесс v=U2—Ui, а при p= oonst =/2— 1. Следовательно, в зависимости от характера процесса пользуются тем или иным параметром. Оба параметра и и i имеют в термодинамике большое значение, являются идентичными по своей роли и широко применяются. Изменение энтальпии для многих газов и их смесей при p= nst и различных температурах вычислено и приведено в справочной и учебной литературе в виде таблиц или диаграмм. Пользуясь этими готовыми данными, легко определить количество тепла <7р процесса для этого необходимо лишь взять из таблицы или диаграммы разность значений энтальпий в конечном и начальном состояниях.  [c.86]

При предметном моделировании исследование ведется на модели, воспроизводящей основные геометрические, физические и функциональные характеристики оригинала. На таких моделях изучают процессы, происходящие в оригинале — объекте исследования. Примером предметного моделирования являются стендовые испытания двигателей внутреннего сгорания, газотурбинных установок, различных типов холодильных установок и т. п. При этих испытаниях исследуются термодинамические циклы установок и их характеристики. Методика исследования циклов некоторых из перечисленных устанорок применительно к задачам учебных лабораторий подробно изложена в [37].  [c.238]

Основываясь на работах Л. С. Попырина, кратко изложим основные положения этого метода в объеме, достаточном для проведения оптимизации автономных ПТУ и ЭХУ в статической детерминированной постановке. При этом, распространяя на ЭХУ определение теплоэнергетической установки, данное в [52], под последней будем понимать единый сложный комплекс разнородных агрегатов, предназначенный для выработки тепловой и электрической энергии, а также холода, путем одновременного непрерывного осуществления различных взаимосвязанных процессов реальных термодинамических прямых и обратных циклов.  [c.39]


Рассматриваются термодинамические циклы энергетических уртановок, использующих неводяные пары, требования к рабочим телам, особенности конструкций основных элементов энергетических установок (паровых и газовых турбин, парогенераторов, ядер-ных реакторов), а также особенности основных рабочих процессов в таких установках (теплоотдача к однофазному потоку, при кипении и конденсации, гидравлические сопротивления).  [c.2]

Если процесс расширения газа в реальных условиях проводить медленно, то работа при этом процессе будет стремиться к значению работы при равновесном процессе. Как будет показано ниже, найденный теоретически коэффициент полезного действия тепловой машины, совершающей обратимый цикл, будет максимальным. Это теоретическое условие дает возможность сделать все необходимое для того, чтобы при конструировании реальных тепловых двигаталей приблизить их к тепловой машине, совершающей обратимый цикл. Изучение равновесных процессов и процессов, близких к равновесным, составляет основное содержание термодинамического исследования.  [c.53]

Цикл ГТУ со сгоранием топлива при р = onst — термодинамический цикл Брайтона для реального процесса — и тепловая схема энергетической ГТУ были приведены на рис. 1.3. Рассмотрим основные характеристики и показатели этого цикла в идеальных и реальных условиях.  [c.27]

Оказалось, что результаты, полученные при использовании псевдоцикла Стирлинга, соответствуют закономерностям и характеристикам реальных двигателей, хотя некоторые выводы и вызывают возрджения. Основные сомнения связаны с интерпретацией идеального цикла, поскольку, по некоторым замечаниям, в нем используются газодинамические процессы, которые не достижимы или не встречаются в практическом двигателе. Подобные замечания справедливы, но довольно очевидны, поскольку идеальные циклы по определению состоят из идеальных и обратимых термодинамических процессов, которые не достижимы в реальных устройствах. Однако использование идеальных циклов и интерпретацию результатов последующего анализа необходимо согласовывать с практическими возможностями. Проблема заключается в том, как найти зо.потую середину . Например, цикл с двойным сгоранием, используемый при анализе рабочего процесса, протекающего в дизеле, дает более реальные значения рабочих характеристик, чем исходный цикл дизеля, но его сочли гипотетическим циклом, выдуманным для того, чтобы получить приемлемые результаты, пока не отражающие идеальных характеристик дизельного двигателя [4]. Если бы критические замечания относительно псевдоцикла Стирлинга основывались на тех же доводах, они были бы более обоснованными. Во всяком случае, этот вопрос интересен в основном для педантов. Трудность проблемы состоит в том, что двигатели Стирлинга не работают по циклу Стирлинга, и в литературе царит путаница в вопросе о том, какие нужно применять критерии работы и рабочие характеристики.  [c.229]

Ввиду сложности явлений, происходящих в цилиндре двигателя, оценку влияния отдельных факторов на его работу целесообразно производить последовательно, рассматривая в цикле главные процессы в простейшей их фррме. При этом не должны приниматься во внимание явления и потери энергии, которые сопутствуют основным процессам и вызываются не термодинамическими требованиями, а влиянием на главные процессы действительных реальных условий. При такой схематизации рабочие циклы превращаются в идеальные (теоретические) циклы. В теоретических циклах в отличие от действительных отсутствуют какие-либо потери, за исключением неизбежной отдачи тепла холодному источнику, без которой, согласно второму закону термодинамики, невозможно превращение в двигателе теплоты в работу.  [c.371]

В первой части книги рассмотрены основные законы термодинамики, термодинамические процессы, дифференциальные уравнения термодинамики и истечения газов и паров. Кроме того, да ю изложение циклов двигателей внутреннего сгорания, газотурбинных, паротурбинных установок и атомных электростанций. Вторая часть посвящена изложению законов теплопроводности при стационарном и нестационарном режимах, теории подобия, конвективного теплообм иа и излучения. В каждой главе помешены числовые примеры. В да1том издании (второе вышло в 197.5 г.) улучнюна редакция, уточнены терминология, формулировки, приведены новые данные.  [c.248]

Однако термодинамический к. п. д. основного цикла паросиловой установки меньше, чем к. п. д. цикла Карно, совершаемого в тех же температурных пределах. Объясняется это тем, что в цикле Карно тепло сообщаегся воде лишь в процессе парообразования и для одного килограмма воды оно равно теплоте парообразования г ккал кг в основном цикле паросиловой установки, помимо теплоты парообразования, воде сообщается также тепло для нагрева ее от температуры до Гь На рис. 48 циклу Карно соответствует диаграмма 1—2—5- -1"—/ и все затрачиваемое тепло измеряется площадью 1—2— 2 —1 —1. Тепло, затрачиваемое в рассмотренном основном цикле паросиловой установки, измеряется значительно большей площадью 4—1—2—2 —4 —4.  [c.170]

Для вывода формулы, служащей для определения термодинамического к. п, д. основного цикла паросиловой установки, воспользуемся диаграммой s — Т, изображенной на рис. 49. Так как процесс нагрева воды и превращения ее в перегретый пар происходит при постоянном давлении, то количество тепла, затрачиваемого в этом процессе, равно разности энтальпий пара в конце процесса парообразования (точка 3) и воды в начале этого процесса (точка 5). Энтальпия воды в точке 5 определяется площадью О—5—5 —0 —О и энтальпия пара i — площадью О—/—2—3—3 —Oi—0. Поэтому количество тепла, затрачиваемого на образование пара, равно q = U — t 2 = площ. О—1—2—3—3 —Oi —О— unoMx.0—5—5 —0t—0 - площ. 5- 1—2— 3—3 —5 —5. Отвод тепла от атара при его коиденсации происходит при постоянном давлении рг- Поэтому количество отводимого тепла 2 можно также считать равным разности эталь-пии пара в начале процесса конденсации (точка 4) и воды в конце этого процесса (точка 5). Энтальпия пара гг в точке 4 определяется площадью О—5—4—3 —0 —0. Количество отводимого тепла равно Qi — h — г 2-=плош. О—5—4—3 —0 —0 — площ.  [c.175]


Смотреть страницы где упоминается термин Основные термодинамические процессы и циклы : [c.321]    [c.252]    [c.290]    [c.179]    [c.199]   
Смотреть главы в:

Термодинамика  -> Основные термодинамические процессы и циклы



ПОИСК



Основные процессы

Основные термодинамические процессы и циклы в диаграмме

Процессы термодинамические

Процессы термодинамические основные

Цикл основной

Цикл термодинамический



© 2025 Mash-xxl.info Реклама на сайте