Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обтекание твердого тела

КРИТЕРИИ ПОДОБИЯ ПРИ ОБТЕКАНИИ ТВЕРДЫХ ТЕЛ ПОТОКОМ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ  [c.578]

В настоящем, втором, издании книга подвергнута большой переработке. Добавлено значительное количество нового материала, в особенности в газодинамике, почти полностью написанной заново. В частности, добавлено изложение теории околозвукового движения. Этот вопрос имеет важнейшее принципиальное значение для всей газодинамики, так как изучение особенностей, возникающих при переходе через звуковую скорость, должно дать возможность выяснения основных качественных свойств стационарного обтекания твердых тел сжимаемым газом. В этой области до настоящего времени еще сравнительно мало сделано многие важные вопросы могут быть еще только поставлены. Имея в виду необходимость их дальнейшей разработки, мы даем подробное изложение применяемого здесь математического аппарата.  [c.12]


Мы будем рассматривать сейчас стационарные движения. Поэтому если речь идет, например, об обтекании твердого тела жидкостью (ниже мы говорим для определенности о таком случае), то скорость натекающего потока жидкости должна быть постоянной. Жидкость мы будем предполагать несжимаемой.  [c.87]

При стационарном обтекании твердого тела вязкой жидкостью движение жидкости на больших расстояниях позади тела обладает своеобразным характером, который может быть исследован в общем виде вне зависимости от формы тела.  [c.101]

Давление и напряжение трения при свободно-молекулярном обтекании твердого тела  [c.153]

Расчет аэродинамических сил при свободно-молекулярном обтекании твердых тел  [c.163]

При обтекании твердого тела потоком жидкости или газа вблизи поверхности благодаря силам вязкости происходит резкое уменьшение скорости, и на поверхности тела она становится равной нулю. Слой жидкости, в котором скорость движения изменяется наиболее существенно, называется динамическим пограничным слоем.  [c.319]

Основные определения. 12.2. Передача теплоты теплопроводностью. 12.3. Теплообмен при внешнем обтекании твердого тела жидкостью. 12.4. Теплообмен при течении жидкости в трубе. 12.5. Теплообмен при кипении жидкости и конденсации пара.  [c.330]

ТЕПЛООБМЕН ПРИ ВНЕШНЕМ ОБТЕКАНИИ ТВЕРДОГО ТЕЛА ЖИДКОСТЬЮ  [c.439]

Следует, однако, иметь в виду, что течений жидкости, строго отвечающих условиям потенциальности, в природе и технике не встречается. Представление о безвихревом характере движения является идеализацией, которая лишь с большей или меньшей степенью достоверности воспроизводит отдельные классы реальных течений. И тем не менее эта идеализация имеет важнейшее не только теоретическое, но и прикладное значение. Оно обусловлено тем, что вязкость жидкости, являющаяся первопричиной (для несжимаемой жидкости единственной) возникновения вихрей, проявляется, как правило, в ограниченных областях вблизи твердых поверхностей или в относительно узкой полосе за обтекаемым телом. В остальной части потока его завихренность может оказаться настолько малой, что поток можно считать потенциальным. Разумеется, встречается немало случаев, когда поток является сплошь завихренным и ни в какой его части влияние вязкости нельзя считать малосущественным. Такой поток может быть рассчитан только методами теории вязкой жидкости. Однако в тех случаях, когда допущение о потенциальности обосновано, его использование может значительно облегчить решение основной задачи гидродинамики. К числу таких случаев относится, например практически важная задача об обтекании твердых тел безграничным потоком (так называемая внешняя задача гидроаэродинамики).  [c.225]


Рис. 6.2. Характер изменения давления в потоке жидкости при обтекании твердого тела Рис. 6.2. Характер изменения давления в <a href="/info/26169">потоке жидкости</a> при обтекании твердого тела
Решение задачи об обтекании твердого тела проводящей жидкостью в присутствии магнитного поля представляет значительный интерес для аэродинамики больших скоростей. Известно, что при сверхзвуковых скоростях полета перед телом образуется сильная ударная волна. Вследствие сильного нагрева газа за ударной волной происходит ионизация, т. е. газ становится электропроводящим. Если с движущимся телом связано магнитное поле, то с этим полем будет взаимодействовать газ, находящийся между телом и головной ударной волной. Такое взаимодействие изменит характер обтекания тела и приведет к изменению теплового потока от газа к телу.  [c.445]

Рис. V. 14. Осесимметричное кавитационное обтекание твердого тела произвольной формы (обобщенная схема Рябушинского). Рис. V. 14. Осесимметричное кавитационное обтекание твердого тела произвольной формы (<a href="/info/482997">обобщенная схема</a> Рябушинского).
Перенос теплоты, происходящий при обтекании твердого тела потоком жидкости при ее свободном движении, называют теплоотдачей при свободном движении жидкости или теплоотдачей при свободной конвекции.  [c.175]

Рассмотрим пример обтекания твердого тела потоком жидкости. Выберем потенциал скорости ф=—иоХ- -,-Н и функцию тока г1з=—щу+и а у  [c.132]

Рис. 3.8. Возникновение подъемной силы при обтекании твердого тела потенциальным потоком Рис. 3.8. Возникновение <a href="/info/14015">подъемной силы</a> при обтекании твердого тела потенциальным потоком
При обтекании твердого тела конечных размеров (рис. 5.3) пограничный слой, образующийся по обе стороны тела, рассеивается на некотором удалении за обтекаемым телом. Область, в пределах которой происходит выравнивание эпюры скорости до эпюры скорости  [c.230]

Решение системы (5.11) должно удовлетворять граничным условиям, которые для внешней задачи об обтекании твердого тела потоком жидкости записываются следующим образом  [c.237]

Сопротивления при обтекании твердого тела (кроме пластины, ориентированной вдоль векторов скорости набегающего потока) жидкостью или газом определяются не только касательными напряжениями, возникающими на твердой границе, но и влиянием образующейся за телом области вихревого течения. Образование этой области связано с явлением отрыва пограничного слоя.  [c.246]

Суммарное сопротивление при обтекании твердого тела  [c.257]

В общем случае сопротивление при обтекании твердого тела потоком жидкости или при движении твердого тела в жидкости представляет собой сумму сопротивления трения и сопротивления давления (сопротивления формы). Неравномерность распределения давления по поверхности тела, неустановившийся характер движения в области отрывного течения сильно ограничивают круг задач, поддающихся аналитическому решению.  [c.257]

Методы газогидравлической аналогии в настоящее время интенсивно разрабатываются как для дозвукового, так и для сверхзвукового обтекания твердых тел.  [c.397]


Вязкая и невязкая жидкости. Воображаемую жидкость, которая характеризуется отсутствием внутреннего трения при ее движении, называют невязкой. Такой жидкости в природе не существует . Темпе менее, абстрактная модель невязкой жидкости оказывается полезной при решении теоретических вопросов и описании ряда явлений, связанных с обтеканием твердых тел и движением жидкости через некоторые установки и сооружения.  [c.18]

Обтекание твердых тел при больших числах Рейнольдса происходит с отрывом пограничного слоя, который, как и у труб (гл. IV, 6), образуется вследствие вязкости жидкости. На рис. 73, б схематично представлена картина обтекания шарового профиля. Скорость частиц жидкости на линии тока, проходящей в бесконечности через центр шара, по мере приближения к нему уменьшается от о = Уоо в бесконечности до нуля в точке 1. Закон распределения скоростей по поверхности профиля для невязкой жидкости — синусоидальный [16], т. е. в точках 3 и 4 скорость будет максимальной, а в точке 2, как и в точке 1, равной нулю. Вследствие этого по закону Бернулли соответствующим образом по профилю распределится и давление в точках 3 ш4 оно будет минимальным, а в точках 1 и 2 — максимальным.  [c.123]

При несимметричном обтекании твердого тела потоком жидкости направление силы, действующей со стороны жидкости на тело, не совпадает с направлением скорости невозмущенного потока i>od (рис. 74). В этом случае силу R можно разложить на составляющие Ry = — R os а — подъемную силу, направленную нормально к вектору Voa, и = 7 sin а — силу лобового сопротивления, совпадающую с направлением вектора г то-  [c.124]

При обтекании твердых тел потоком вязкой несжимаемой жидкости с постоянными физическими свойствами процесс теплоотдачи описывается сисгемой дифференциальных уравнений, включающей уравнения движения, неразрывности и энергии. В двухмерном приближении эта система уравнений имеет вид  [c.95]

Из опыта известно, что интенсивность теплоотдачи при обтекании твердого тела потоком однофазной химически однородной изотропной несжимаемой жидкости с постоянными физическими свойствами (при отсутствии переноса теплоты излучением) зависит от следующих восьми размерных величин, входящих в уравнения (2.52) —(2.56), описывающие процесс теплоотдачи при условии пренебрежения работой сил внутреннего трения, переходящей в теплоту характерного размера I тела, м [Ь] скорости w потока, омывающего тело, м/с [ Т ]  [c.99]

Коэффициент сопротивления капель имеет, строго говоря, иной смысл, чем при обтекании твердых тел потоком газа. Движение капли сопровождается конденсацией на ней пара. В жидкую фазу переходят молекулы из пограничного слоя, а он пополняется частицами пара. Последние движутся с большей скоростью, чем капли, и, попадая в пограничный слой, способствуют ее разгону. Поэтому коэффициент сопротивления становится иным, чем для твердого тела. Однако в настоящее время нет обоснованных данных для введения такого рода поправок.  [c.53]

Оказывается, что на больших расстояниях позади тела скорость V заметно отлична от нуля лишь в сравнительно узкой области вокруг оси х. В эту область, называемую ламинарным следом ), попадают частицы жидкости, движущиеся вдоль линий тока, проходящих мимо обтекаемого тела на сравнительно небольших расстояниях от него. Поэтому движение жидкости в следе существенно завихрено. Дело в том, что источником завихренности при обтекании твердого тела вязкой жидкостью является именно его поверхность ). Это легко понять, вспомнив, что в картине потенциального обтекания, отвечаюи ей иде-  [c.101]

Такое математическое исследование устойчивости, однако, крайне сложно. До настоящего времени не разработан теоретически вопрос об устойчивости стационарного обтекания тел конечных размеров. Нет сомнения в том, что при достаточно малых числах Рейнольдса стационарное обтекание устойчиво. Экспериментальные данные свидетельствуют о том, что при увеличении R достигается в конце концов определенное его значение (которое называют критическим, R, p), начиная с которого движение становится неустойчивым, так что при достаточно больших числах Рейнольдса (R > Ккр) стационарное обтекание твердых тел вообще невозможно. Критическое значение числа Рей нольдса не является, ралумсстся, универсальным для каждого типа движения существует свое Ккр. Эти значения, по-видимому,— порядка нескольких десятков (так, при поперечном обтекании цилиндра незатухающее нестационарное двгжеиие наблюдалось уже при R — udjy -х. 30, где —диаметр цилиндра).  [c.138]

При числах Рейнольдса, значительно превышающих критическое значение, при обтекании твердого тела потоком жидкости позади тела образуется длинная область турбулентного движения. Эту область называют турбулентным следом. На больших (по сравнению с размерами тела) расстояниях простые соображения позволяют определить форму следа и закон убывания скорости жидкости в нем (L, Prandtl, 1926).  [c.216]

В гл. 3 были установлены признаки потенциального движения. Следует отметить, что движение, строго соответствующее условиям безвихревого (потенциального) движения, в природе и технике отсутствует. Но в ряде случаев можно применить понятие потенциальное движение, условно идеализируя реально происходящее движение вязкой жидкости. Во многих задачах значительная часть области, занятой движущейся жидкостью, находится в условиях практически безвихревого движения. При обтекании твердых тел реальной жидкостью всю область движения делят на две тонкий пограничный слой, примыкающий непосредственно к телу, и внещнюю область, где пренебрегают силами вязкости и движение считают потенциальным. Как будет показано ниже, движение жидкости через оголовок водослива и из-под затвора при больщих скоростях также можно считать потенциальным. Движение вязкой жидкости в пористой среде, если рассматривать индивидуально поровые к.аналы, является вихревым, с уменьшающимися к стенкам местными скоростями в каждом норовом канале. Но, рассматривая осредненное по пространству, как было указано в гл. 27, движение (при линейном законе фильтрации), справедливо можно считать его потенциальным.  [c.279]


Изложены основные вопросы технической механики жидкости и газа. Приведены физические свойства жидкостей и газа. Освещены законы равновесия, основы кинематики и динамики жидкости и газа, гидравлические сопротивления. Рассмотрено движение по трубопроводам и истечение через отверстия и насадки жидкости и газа. Описано обтекание твердых тел потоком жидкости и газа. Даны основы моделирования гидроаэродииамических явлений.  [c.2]

При обтекании твердого тела потоком жидкости или при движении твердого тела в покоящейся жидкости возникают гидравлические сопротивления. Эти сопротивления проявляются в непосредственной близости от самого тела и определяются действием сил вязкости и сил, оп-ределяемьгх разностью давления перед обтекаемым телом и за ним. Соотношение между силами трения и давления может быть различным, в зависимости от формы твердого тела, направления движения потока, обтекающего тело, и ряда других факторов.  [c.227]

В различных задачах в зависимости от их постановки определяющие критерии подобия могут стать неопределяющими, и наоборот. Иногда критериев подобия, полученных из дифференциальных уравнений, оказывается недостаточно, так как не всегда могут быть однозначно сформулированы граничные или начальные условия. В этих случаях недостающие безразмерные величины могут быть определены на основании теории размерностей и результатов экспериментальных исследований на моделях. Так, для шероховатых труб такой величиной является относительная шероховатость, при обтекании твердого тела потоком жидкости или газа — его форма, соотношение размеров и т. п.  [c.389]


Смотреть страницы где упоминается термин Обтекание твердого тела : [c.5]    [c.6]    [c.93]    [c.251]    [c.383]   
Теория и приложения уравнения Больцмана (1978) -- [ c.242 , c.377 , c.378 , c.381 , c.395 , c.400 , c.401 , c.420 , c.423 ]



ПОИСК



Обтекание



© 2025 Mash-xxl.info Реклама на сайте