Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкость. Ламинарное течение

Вязкость. Ламинарное течение  [c.141]

Сравнение с уравнениями Рейнольдса показывает, что коэффициент е Сен-Венана включает в себя влияние как молекулярной вязкости, так и турбулентного переноса количества движения. В случае доминирующего значения вязкости (ламинарное течение) е= я преобладание же в потоке турбулентности приводит к следующим выражениям  [c.276]

Исключая тривиальные случаи гидростатики и твердотельного стационарного переноса, ламинарные течения практически возможны только при стационарных течениях в длинных каналах постоянного сечения. В ламинарных течениях, разумеется, нельзя пренебрегать силами вязкости по сравнению с силами инерции, даже если число Рейнольдса велико, поскольку инерционные силы в этом случае тождественно равны нулю.  [c.260]


Паскаль-секунда равна динамической вязкости среды, касательное напряжение в которой при ламинарном течении и при разности скоростей слоев, находящихся па расстоянии 1 м по нормали к направлению скорости, равной 1 м/с, равно 1 Па.  [c.69]

При ламинарном течении вязкость оказывает существенное влияние на весь поток в целом, тогда как при турбулентном течении преобладающая роль принадлежит силам инерции. Поэтому переход от ламинарного режима течения к турбулентному определяется отношением инерционных сил к силам вязкости. Это отношение принято характеризовать безразмерной величиной, называемой числом Рейнольдса  [c.146]

Джоуль на килограмм равен потенциалу гравитационного поля, в котором материальная точка массы 1 кг обладает потенциальной энергией 1 Дж Паскаль-секунда равна динамической вязкости среды, в которой при ламинарном течении и при разности скоростей слоев, находящихся на расстоянии 1 м по нормали к направлению скорости, равной 1 м/с, равна 1 Па  [c.252]

Коэффициент вязкости. Рассмотрим ламинарное течение газа вдоль оси х, когда по оси у существует градиент скорости (рис. 15), так что скорость течения и имеет компоненты  [c.148]

При значениях Ке, , > 1600 ламинарно-волновой режим течения пленки сменяется турбулентным. При этом так же, как и в обычных турбулентных потоках (например, в каналах), слой жидкости, непосредственно прилегающий к стенке, сохраняет черты ламинарного течения, а за пределами этого слоя пленки действует механизм турбулентного перемешивания. Это позволяет исключить из рассмотрения влияние волновых процессов, вязкости и поверхностного натяжения жидкости на касательные напряжения и связь между толщиной пленки и плотностью орошения. Анализ и результаты экспериментального изучения закономерностей течения тонких пленок показывают, что для свободно стекающей пленки можно записать равенство осредненных или локальных значений веса пленки и касательных напряжений на стенке в виде  [c.173]

При ламинарном течении вследствие изменения теплофизических свойств жидкости могут иметь место два режима движения— вязкостный и вязкостно-гравитационный. Теплообмен при этих режимах протекает различно. Вязкостный режим характеризуется преобладанием сил вязкости над подъемными, т. е. этот режим соответствует течению вязких жидкостей при малом влиянии естественной конвекции или отсутствии его. При вязкостно-гравитационном режиме движения силы вязкости и подъемные силы соизмеримы.  [c.301]


Рейнольдсом дан метод установления характера течения жидкости не только при помощи такого рода качественных опытов, но также через количественный критерий, пользуясь которым можно заранее предсказать этот характер. Как показали поставленные им опыты, переход ламинарного течения в турбулентное при заданных диаметре трубы, абсолютной вязкости жидкости и ее плотности обусловливается увеличением скорости течения. Однако того же эффекта при заданных скорости, абсолютной вязкости и плотности можно добиться в трубе большего диаметра или при заданных диаметре трубы и скорости  [c.120]

В 36 указывалось, например, что переход из ламинарного течения в турбулентное может быть осуществлен в результате увеличения скорости течения жидкости в трубе, или снижения (например, путем подогрева) вязкости жидкости при сохранении прежней скорости течения в той же трубе, или, наконец, перекачивания в аналогичных условиях другой жидкости, имеющей большую плотность.  [c.129]

Определить наибольшую величину диаметра трубы й. при котором на. достаточном удалении от входа будет иметь место ламинарное течение, если через поперечное сечение трубы протекает-ц — 2 л/сек керосина кинематической вязкости V = 0,05 см /сек. Найти также, какова будет при этом средняя скорость течения керосина w.  [c.57]

Найти максимальное значение гидравлического уклона, при котором возможно ламинарное течение жидкости вязкостью ч в трубе кругового сечения диаметром с1.  [c.58]

Из опытов по перекачке нефти по лабораторному нефтепроводу предполагалось определить коэффициент гидравлического сопротивления для ламинарного течения X и проверить теоретическую формулу Стокса. Диаметр трубопровода (1= 100 мм, его длина =100 вязкость нефти V = 0 см, удельный вес 7 = 0,905 т/м .  [c.81]

Формула (VHI-30) позволяет решать задачи ламинарного течения, в которых необходимо учитывать переменность вязкости.  [c.205]

Образование турбулентного движения можно обосновать еще исходя из общих законов физики, в частности из второго закона термодинамики в формулировке С. Больцмана Во всякой изолированной системе происходят такие изменения, которые приводят систему в ее наиболее вероятное состояние . С этой точки зрения хаотичное движение отдельных частиц в потоке жидкости, свойственное турбулентному движению, является более вероятным, чем другие, более упорядоченные формы движения. Параллельноструйное ламинарное течение может возникнуть только в условиях, которые не дают возможности частицам жидкости двигаться беспорядочно (из-за большой вязкости жидкости при малых скоростях).  [c.141]

Касательное напряжение на поверхности пластинки при ламинарном течении выразится через скорость на границе слоя, его толщину и молекулярную вязкость рмулой (6), т. е.  [c.299]

Задача 2.23. Определить потерю давления в диффузоре с начальным d=lO мм и конечным 0 = 20 мм диаметрами, если вязкость жидкости v=l Ст плотность р = 900 кг/м расход Q=1 л/с угол диффузора а = 5°. При решении задачи считать, что в любом сечении диффузора существует стабилизированное ламинарное течение и справедлив закон Пуазейля.  [c.42]

Движение жидкости может быть ламинарным или турбулентным. При ламинарном режиме частицы жидкости движутся послойно, яе перемешиваясь. Турбулентный режим характеризуется непрерывным перемешиванием всех слоев жидкости. Ламинарное течение переходит в турбулентное при критическом значении числа Рейнольдса Не = wl/v, где V — кинематическая вязкость, м /с. Режим движения жидкости, промежуточный между ламинарным Я турбулентным, называется переходным.  [c.196]

При увеличении скорости набегающего потока пограничный слой как бы сдувается и делается тоньше наоборот, при увеличении вязкости, характеризуемой коэффициентом ц, толщина слоя увеличивается. При малых значениях х в пограничном слое происходит ламинарное течение. Но поскольку при увеличении значения х толщина пограничного слоя увеличивается, движение в нем становится неустойчивым и переходит  [c.155]


При турбулентном движении весь поток насыщен беспорядочно движущимися вихрями, которые Непрерывно возникают и исчезают. В точности механизм вихреобразования еще не установлен. Одной из причин их возникновения является потеря устойчивости ламинарного течения, сопровождающаяся образованием завихрений, которые затем диффундируют в ядро и, развиваясь, заполняют весь поток. Одновременно с этим вследствие вязкости жидкости эти вихри постепенно затухают и исчезают. Благодаря непрерывному образованию вихрей и их диффузии происходит сильное перемешивание жидкости, называемое турбулентным смешением. Чем больше вихрей, тем интенсивнее перемешивание жидкости и тем больше турбулентность потока. Различают естественную и. искусственную турбулентность. Первая устанавливается естественно. Для случая стабилизированного движения внутри гладкой трубы турбулентность вполне определяется значением критерия Re. Вто-  [c.33]

При турбулентном движении весь поток насыщен беспорядочно движущимися вихрями, которые непрерывно возникают и исчезают. В точности механизм вихреобразования еще не установлен. Одной из причин их возникновения является потеря устойчивости ламинарного течения, сопровождающаяся образованием завихрений, которые затем диффундируют в ядро и, развиваясь, заполняют весь поток. Одновременно с этим вследствие вязкости жидкости  [c.36]

Сам Рейнольдс очень образно объяснял своим ученикам физический смысл открытого им критерия Жидкость можно уподобить отряду воинов, ламинарное течение — монолитному походному строю, турбулентное — беспорядочному движению. Скорость жидкости и диаметр трубы — это скорость и величина отряда, вязкость-дисциплина, а плотность — вооружение. Чем больше отряд, чем быстрее его движение и тяжелее вооружение, тем раньше распадается строй. Таким же образом турбулентность возникает в жидкости тем быстрее, чем выше ее плотность, чем меньше вязкость и больше скорость жидкости и диаметр трубы .  [c.109]

Вязкость — мера внутреннего трения флюидов. В условиях установившегося ламинарного течения вязкость— постоянная величина, выраженная коэффициентом пропорциональности в формуле  [c.215]

Таким образом, на данной стадии возможны два подхода к гидромеханике неньютоновских жидкостей. С одной стороны, можно сконцентрировать внимание на проблемах течения, для которых (в некотором смысле требующем определения) используется лишь кажущаяся вискозиметрическая вязкость, так что неадекватность уравнения (2-3.4) считается несущественной. Такая система представлений характерна для предмета, который мы будем называть обобщенной ньютоновской гидромеханикой. Этот подход может быть оправдан либо вследствие того, что в рассматриваемом течении существенна лишь вискозиметрическая вязкость (к этой категории относятся ламинарные течения, по крайней мере в первом приближении), либо вследствие того, что рассматриваемый материал имеет зависящую от сдвига вискозиме-трическую вязкость, но не обладает никакими другими неньютоновскими свойствами. (К этому типу зачастую относятся суспензии твердых частиц, но, к сожалению, нельзя отнести более важные в практическом отношении полимерные расплавы и растворы.)  [c.66]

Ньютоновское реологическое уравнение состояния получается как частный случай при = 1. Жидкости с псевдопластическим поведением соответствует п < 1, а с дилатантным поведением соответствует га > 1. Хотя уравнение (2-4.4) часто довольно точно описывает кривую вискозиметрической вязкости для реальных материалов в диапазоне изменения S от одного до нескольких порядков, оно неприменимо для предсказания верхнего и нижнего пределов вязкости. В частности, для псевдопластических жидкостей (п < 1) уравнение (2-4.4) предсказывает бесконечно большую вязкость в предельном случае исчезающе малых скоростей сдвига. Несмотря на эту трудность, расчеты течений, основанные на уравнении (2-4.4), успешно применялись в инженерном анализе различных задач теории ламинарных течений. В книге Скелланда [9] приведен обзор расчетов такого типа.  [c.68]

Мы проиллюстрировали методику, при помощи которой виско-зиметрическую вязкость можно рассчитать на основании данных по падению давления в ламинарном течении в круглых трубках. Течения в других устройствах, для которых можно определить т], будут обсуждены в последующих главах.  [c.71]

Если представить в такой форме данные для полимерных ja TBopOB, то возникает вопрос о подходяш ем определении числа ейнольдса, поскольку вискозиметрическая вязкость этих растворов обычно зависит от скорости сдвига. Обычно используют такое определение числа Рейнольдса, при котором справедлива корреляция для ламинарного течения полимерного раствора [26], ука-зываюш ая на отсутствие снижения сопротивления при числах Рейнольдса ниже 2100 (переход к турбулентному режиму никогда не наблюдается при значениях, меньших 2100). В действительности падение давления при ламинарном течении раствора более высокое, чем при течении с той же расходной скоростью чистого раство-  [c.281]

При малых числах Re преобладают силы вязкости и режим течения жидкости ламинарной (отдельные струи потока не перемешиваются, двигаясь параллельно друг другу, и всякие случайные завихрения быстро затухают под действием сил вязкости). При турбулентном течении в потоке преобладают силы инерции, поэтому завихрения интенсивно развиваются. При продольном обтекании пластины (см. рис. 9,2) ламинарное течение в пограничном слое нарушается на расстоянии Хкр от лобовой точки, на котором Re p = ЮжХкр/v 5 10 .  [c.82]

Окружная сила Т, противодействующая вращению вала, равна сумме сил вязкого сдвига масла в зазоре по всей окружности вала. По закону вязкого трения Ньютона при ламинарном течении сила Г пропорциональна поверхности сдвига (т. е. величине юИ), вязкости масла Т1, скорости сдвига и и обратно пропорциональна толщше /г масляного слоя.  [c.342]

Толш,ина пограничного слоя растет вниз по течению вдоль обтекаемой поверхности (закон этого возрастания будет найден ниже). Это объясняет, почему при течении по трубе логарифмический профиль имеет место вдоль всего сечения трубы. Тол-ш,ина пограничного слоя у стенки трубы растет, начиная от входа в трубу. Уже на некотором конечном расстоянии от входа пограничный слой как бы заполняет собой все сече]1ие трубы. Поэтому если рассматривать трубу как достаточно длинную и не интересоваться ее начальным участком, то течение во всем ее объеме будет того же типа, как н в турбулентном пограничном слое. Напомним, что аналогичное положение имеет место и для ламинарного течения по трубе. Оно всегда описывается формулой (17,9) роль вязкости в нем проявляется на всех расстояниях от стенки и никогда не бывает ограничена тонким пристеночным слоем жидкости.  [c.252]


Для большинства капельных жидкостей характерно существенное влияние тем пературы на динамический коэффициент вязкости и слабое влияние — на остальные теплофизические характеристики. На этом основании Е. Зидер и Г. Тэйт для ламинарного течения капельных жидкостей предложили поправку в форме  [c.315]

При Re 2-10 наблюдается ламинарное течение жидкости. Однако при большом температурном напоре в поперечном сечении ламинарного потока может возникнуть свободное движение, обусловленное гравитационными силами. Поэтому среди неизотермических ламинарных потоков различают вязкостный и вязкостно-гравитационный режимы течения. В первом случае силы вязкости превалируют над силами гравита-  [c.334]

Прилегающую к стенке область 2 буу называют вязким подслоем, а величину буу, определяющую верхнюю границу вязкого подслоя, — толщиной вязкого подслоя. В вязком подслое преобладает влияние молекулярной вязкости турбулентная вязкость в этой области значения не имеет. Следствием этого являются как линейное распределение скоростей, так и равенство о = r дwJдz, вполне аналогичные тем, которые имеют место при ламинарном течении.  [c.404]

При выводе уравнений Навье—Стокса не делалось каких-либо предположений о режиме движения. Поскольку свойство вязкости присуще реальным жидкостям независимо от режима их движения и при переходе от ламинарного течения к турбулентному другие физические свойства не изменяются, можно предполагать, что обобщенная гипотеза Ньютона, а значит и опирающиеся на нее уравнения Навье—Стокса, справедливы как при ламинарном, так и при турбулентном движении жидкости. Однако в последнем случае использовать уравнения Навье—Стокса для получения каких-либо прикладных решений практически невозможно. Входящие в них мгновенные скорости и давление при турбулентных режимах являются пульсирующими величинами. Даже если бы эти параметры удалось найти путем решения уравнений Навье—Стокса, что представляет крайне трудную задачу, то использовать эти мгновенные значения величин в практических целях было бы весьма затруднительно. Поэтому для турбулентного режима ставится задача отыскания усредненных во времени скоростей и давлений. Эти усредненные величины сами могут оказаться зависящими или независящими от времени. В первом случае турбулентнсе течение считается неустановившимся, а во втором — установившимся. -  [c.96]

Режим движения жидкости существенным образом зависит от соотношения действующих на частицы жидкости сил. Если при движении жидкости доминируют силы вязкости, то режим движения ламинарный (течение мазута, густого масла, патоки) Ке<Кекр. Если преобладают силы инерции, то режим движения турбулентный КеЖвкр.  [c.41]

Из опыта известно, что процесс теплоотдачи при ламинарном течении несжимаемой жидкости с постоянными физическими свойствами на основном участке круглой трубы определяется следующими восемью размерными величинами оу — средней по сечению трубы скоростью р — плотностью жидкости d — диаметром трубы к и с — вязкостью, теплопроводностью и массовой теплоемкостью жидкости gPAT — подъемной силой, отнесенной к единице массы жидкости, и а — коэффициентом теплоотдачи. Приняв за основные величины длину, время, массу и температуру, составить безразмерные комплексы, характеризующие явление, и определить их число.  [c.227]

Условия перехода от ламинарного течения капельной жидкости к турбулентному и, наоборот, от турбулентного к ламинарному в круглых трубах впервые в 1883—1885 гг. изучил английский исследователь О. Рейнольдс. Проведя большое число опытов на установке, схема которой приведена на рис. 85, Рейнольдс установил, что stOT переход определяется такими четырьмя физическими величинами средней скоростью течения v, диаметром трубы d, вязкостью жидкости и ее плотностью р.  [c.139]

Динамическую вязкость измеряют в паскаль-секундах (Па-с). Паскаль-секуида — это такая динамическая вязкость среды, при ламинарном течении которой в слоях, находящихся на расстоянии 1 м, в направлении, перпендикулярном течению, возникает разность скоростей течения 1 м/с под действием давления сдвига 1 Па. В практике испытаний все еще применяется и другая единица вязкости — пуаз (II) i П 0,1 Па-с.  [c.183]

Ламинарное течение в трубе происходит при Re= = ui ou7v 2300, где Wo = Glpf — средняя по сечению трубы / скорость жидкости d — внутренний диаметр трубы V — кинематическая вязкость. При невозмущенном потоке на входе в трубу в начальном сечении при х=0 имеем однородное поле скорости (прямолинейный профиль)— рис. 15.2. У стенки трубы формируется пограничный слой, толщина его растет в направлении потока и при х = 1н заполняет все поперечное сечение трубы, при этом n=dl2. Оценить величину 1 можно на основе формулы (14.54) для плоского пограничного слоя, которую можно представить так л76= (1/4,64) i oe/v при b = d 2 имеем x /d —0,0116 Re, т. е. величина la d состав-  [c.377]

Ламинарный режим течения жидкости (или газа) — режим течения параллельных слоев ( ламин ), которые не перемешиваются между собой. Взаимодействие слоев обусловлено вязкостью и различием скоростей. При ламинарном течении критерий Ке не достигает критического значения. При течении в трубах  [c.102]

Если за счет умень 1ения, вязкости при зкленьшении давления происходит переход ларлинарного течения в турбулентное, то для горизонтального трубопровода сечение, в котором кончается ламинарное течение, расположено на расстоянии  [c.58]


Смотреть страницы где упоминается термин Вязкость. Ламинарное течение : [c.79]    [c.64]    [c.72]    [c.121]    [c.89]    [c.101]    [c.134]   
Смотреть главы в:

Физические основы механики и акустики  -> Вязкость. Ламинарное течение



ПОИСК



Вязкость ламинарная

Ламинарное те—иве

Распределение скоростей в начальном участке ламинарного течения . — 19. Потеря давления в начальном участке ламинарного течения . — 20. Значение потери давления в начальном участке ламинарного течения для определения вязкости путем изменения количества вытекающей жидкости

Течение ламинарное



© 2025 Mash-xxl.info Реклама на сайте