Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кручение при тонкостенного стержня открытого

Кручение упрочняющихся тонкостенных стержней открытого профиля (на основе решения задачи о кручении вытянутого прямоугольника). В этой задаче можно принимать, что функция напряжений Р не зависит от х (продольное направление). При этом из уравнения (36) следует, что для такого прямоугольника  [c.516]

Открытые профили. Определяя при кручении напряжения и деформации в тонкостенных стержнях открытого профиля типа  [c.227]


При несвободном (стесненном) кручении, когда депланация сечений затруднена, приведенные выше формулы непригодны. Общая теория стесненного кручения тонкостенных стержней открытого профиля разработана В. 3. Власовым. Он показал, что при стесненном кручении кроме касательных напряжений чистого кручения, вычисляемых по приведенным выше формулам, в поперечном сечении возникают значительные дополнительные касательные и нормальные напряжения. Изложение теории стесненного кручения тонкостенных стержней выходит за пределы краткого курса сопротивления материалов.  [c.123]

Решение. Основные зависимости теории расчета тонкостенных стержней замкнутого профиля, в основу которой положены гипотезы о недеформируемо- сти контура и о возможности деформаций сдвига в срединной поверхности (в отличие от гипотезы об отсутствии сдвигов для тонкостенных стержней открытого профиля), приведены к виду, для которого записаны расчетные формулы, аналогичные применяемым в теории открытых тонкостенных стержней. Это удалось осуществить путем введения понятия обобщенной секториальной координаты ш, через которую выражаются все основные геометрические характеристики, необходимые для расчетов стержня при стесненном кручении.  [c.239]

Открытые профили. Определяя при кручении напряжения и деформации в тонкостенных стержнях открытого профиля типа швеллера, двутавра (рис. 224) или уголка, можно воспользоваться теорией расчета на кручение стержней прямоугольного сечения. В этом случае незамкнутый профиль разбиваем на прямоугольные элементы, толщина которых значительно меньше их длины. Как видно из табл. 14, для таких прямоугольных элементов (при /г/й >10) коэффициенты аир равны 1/3. Тогда для составного профиля на основании выражений (9.33) и (9.37)  [c.246]

Заметим, что нагрузка р хз) не обязательно должна лежать в плоскости x-iXi, она может действовать в параллельной плоскости. Величины прогибов и нормальных напряжений при изгибе от этого не меняются, как будет видно из приводимого ниже вывода. Однако касательные напряжения зависят от положения плоскости действия сил, они могут потребовать для своего уравновешивания приложения к торцам балки крутящих моментов. Если ось х-2. есть ось симметрии сечения, то, очевидно, крутящий момент не потребуется, если нагрузка лежит в плоскости Хг, Хз, нагрузка в любой параллельной плоскости будет вызывать кручение. Однако, если ось есть главная центральная ось сечения, по не ось симметрии, и нагрузка лежит в плоскости Хг, Хз, изгиб, как правило, будет сопровождаться кручением чтобы кручения пе было, ось х должна проходить не через центр сечения, а через некоторую точку, называемую центром изгиба. Элементарная теория, позволяющая найти центр изгиба для тонкостенных стержней открытого профиля, была изложена в 3.7, распространение ее на стержни произвольного сечения служит предметом теории изгиба Сен-Венана, которая в этой книге излагаться не будет.  [c.387]


Пусть средняя линия поперечного сечения тонкостенного стержня открытого профиля имеет вид гладкой кривой. При свободном кручении такой стержень деформируется так, что ведущая роль  [c.311]

Полные нормальные и касательные напряжения в поперечном сечении. Как установлено при рассмотрении задач кручения, касательные напряжения при кручении тонкостенных стержней открытого профиля распределяются по толщине стенки поперечного сечения по линейному закону. При этом постоянная по толщине часть напряжения определяется через относительный угол закручивания 0 по формуле (14.18), а кососимметричная часть — по фор-  [c.335]

Как определяются максимальные касательные напряжения и угол закручивания при кручении брусьев прямоугольного сечения и тонкостенных стержней открытого профиля  [c.207]

Общие сведения. Цель работы — ознакомление со стесненным кручением тонкостенных стержней открытого профиля. При этом следует определить экспериментально 1) напряжения в плоскости заделки тонкостенной консоли, нагруженной закручивающим моментом на конце и 2) угол закручивания. Полученные величины сравнить с их теоретическими значениями.  [c.103]

В главах XI и XII деформация тонкостенных стержней уже обсуждалась. В главе XI рассматривалось свободное кручение тонкостенных стержней открытого и замкнутого профиля и в главе XII — определение касательных напряжений в тонкостенных стержнях при поперечном изгибе и определение координат центра изгиба в поперечном сечении тонкостенного стержня открытого профиля. Ниже излагается теория стесненной деформации тонкостенных стержней открытого профиля.  [c.382]

Теоретическое исследование изгиба и кручения тонкостенных стержней открытого профиля впервые выполнил С. П. Тимошенко (Об устойчивости плоской формы изгиба двутавровой балки. Известия СПб Политехнического института, т. IV—V, 1905—1906), при этом крутильную жесткость стержня он определил экспериментально. С. П. Тимошенко обнаружил возникновение нормальных напряжений при стесненном кручении тонкостенного стержня открытого профиля.  [c.385]

Таким образом, при условии, что точка А является центром кручения, мы пришли к необходимости удовлетворения тем же требованиям, что и при отыскании центра изгиба и совпадающего с ним главного секторного полюса. Иными словами, центр кручения и центр изгиба в поперечном сечении тонкостенного стержня открытого профиля совпадают.  [c.403]

Влияние на кручение изгибающих моментов. В тонкостенных стержнях открытого профиля возникает эффект стеснения депланации и при воздействии на стержень внешнего изгибающего момента. Следует строго разграничивать случаи образования внешнего изгибающего момента поперечными силами (как это было показано выше) и продольными силами. На рис. 14,20 показан стержень швеллерного сечения. На рис. 14.20, а изображена эпюра секторных площадей этого сечения. На рис. 14.20, б, в показаны два варианта создания изгибающего момента поперечными силами и продольными силами, действующими в одной и той же плоскости. При этом изгибающий момент, созданный поперечными силами, кручения стержня не вызывает, поскольку плоскость его действия проходит через центр изгиба. Продольные же силы, образующие изгибающий момент, вызывают кручение, поскольку сила Р, приложенная в точке В, где ордината эпюры со не равна нулю, создает бимомент В = Р(о . На рис. 14.20, г, д изображен другой случай расположения линий действия поперечных и продольных сил, создающих изгибающий момент. В этом случае момент, создаваемый поперечными силами, вызывает кручение, поскольку плоскость его действия не проходит через центр изгиба сечения, а изгибающий момент, создаваемый продольными силами, кручения не вызывает, так как в точках приложения обеих сил (точки 5 и ординаты эпюры и равны нулю, и следовательно, бимомент, соответствующий этим силам, равен нулю. Пусть момент представляется как результат  [c.415]


Из формулы (144) следует, что тонкостенные стержни открытого профиля, составленные из прямоугольных и трапецеидальных полосок, столь же невыгодны при кручении, как и стержень с узким прямоугольным сечением, поскольку его жесткость значительно меньше жесткости круглого стержня с той же общей площадью поперечного сечения.  [c.276]

Иначе обстоит дело в случае тонкостенных стержней открытого профиля. Запрещение депланаций на торцах таких стержней играет весьма существенную роль и оказывает решающее влияние на величину жесткости стержня при его кручении.  [c.276]

Характерные особенности замкнутых профи л е й. В трубчатых стержнях, согласно формуле (159), максимальное касательное напряжение получается в наиболее узком месте профиля. Это не имеет места в тонкостенных стерл<нях с открытым профилем, наоборот, в стержнях открытого профиля с гладким контуром, как правило, наибольшее касательное напряжение возникает на контуре в самых толстых местах профиля. При равной площади сечений и одинаковой величине крутящего момента максимальное результирующее напряжение, возникающее в тонкостенном стержне открытого профиля, будет значительно превосходить таковое в тонкостенном стержне замкнутого профиля, а жесткость при кручении стержня открытого профиля при тех же условиях будет значительно. меньше жесткости стержня замкнутого профиля. Отсюда следует, что с точки зрения чистого кручения тонкостенные стержни замкнутого профиля значительно более выгодны, чем стержни открытого профиля.  [c.281]

Вопросы изгиба, а также совместного изгиба и кручения тонкостенных стержней открытого профиля обсуждены в книге Ю. Н. Работнова [132]. При этом для упрощения решения задачи принято, что касательное напряжение настолько мало по сравнению с нормальным, что интенсивность напряжений можно считать приближенно равной нормальному напряжению.  [c.232]

Уже из этого можно заключить, что между тонкостенными стержнями открытого и закрытого профилей существует большое принципиальное различие в отношении их свойств при кручении. Суть этого различия становится ясна из рис. 54, на котором показаны потоки результирующих касательных напряжений на границах односвязных (а) и многосвязных (б) тонкостенных профилей. У односвязных профилей касательные напряжения линейно изменяются по толщине, имея различные знаки (при одинаковой абсолютной величине) в двух смежных точках границы А и В. У многосвязных профилей касательные напряжения постоянны по толщине и в двух смежных точках А к В напряжения имеют не только одинаковую величину, но и одинаковый знак. Ясно, что при одной и той же величине максимальных напряжений и одинаковой площади сечения профиля вторая система напряжений будет создавать значительно больший крутящий момент, нежели первая. Можно сказать и обратное при равной площади сечения профиля и одинаковой величине крутящего момента максимальное результирующее напряжение, возникающее в тонкостенном  [c.277]

Аналогия между распределением напряжений при кручении и течением жидкости в плоском сосуде, имеющем форму поперечного сечения стержня в плане, позволяет легко составить качественную картину распределения напряжений при кручении тонкостенного стержня открытого профиля (рИС 129).  [c.196]

Обращаясь к примерам разрезанной и неразрезанной трубы, можно-понять, какие напряжения в сечении уравновешивают крутящий момент, С одной стороны, это система касательных напряжений, распределенных линейно по толщине и возникающих при обычном кручении тонкостенного стержня открытого профиля. С другой, существование нормальных напряжений, как показано в 126, связано с существованием касательных напряжений, распределенных по толщине стенки равномерно. Эти касательные напряжения (будем называть их изгибно-крутильными) участвуют в уравновешивании крутящего момента.  [c.283]

В литературе принято называть эти уравнения уравнениями теории пологих оболочек. Соответствующие решения оказываются затухающими на расстоянии по дуге порядка X = 1/Rh. Многие авторы рекомендуют применять их и для оболочек, размер которых в плане существенно больше, чем Я. Так, Власов рекомендовал эти уравнения для оболочек, у которых стрела подъема не превышает 1/5 пролета, никак не оговаривая при этом относительную толщину. Многочисленные расчеты с помощью приближенных уравнений (12.16.4) и уравнений точной теории, которые мы здесь не приводим, показали, что для оболочек, применяемых обычно в строительной практике, разница сравнительно невелика и рекомендация Власова может считаться практически обоснованной, хотя строгий анализ подтверждает пригодность уравнений (12.16.4) лишь для оболочек, размер которых в плане имеет порядок X, или для исследования краевых эффектов в оболочках положительной гауссовой кривизны. Последняя оговорка существенна. В оболочках отрицательной кривизны состояния изгиба могут простираться сколь угодно далеко вдоль асимптотических линий. В оболочках нулевой кривизны, например цилиндрических, изложенная в 12.13 теория применима далеко не всегда. Действительно, приближенная теория изгиба и кручения тонкостенных стержней открытого профиля, изложенная в 9.15, по существу представляла собою некоторый упрощенный вариант теории оболочек. Краевой эффект от бимоментной  [c.428]

Уточненная теория крутильных колебаний тонкостенных стержней открытого профиля. Если при кручении тонкостенного стержня открытого профиля учитывать наряду с чистым кручением и депланационными эффектами также напряжения сдвига срединной поверхности, то потенциальная энергия деформации  [c.151]


Д и ф ф е рвндиальноа уравнение углов закручивания тонкостенного стержня открытого профиля при стесненном кручении  [c.211]

Одна из задач стеснённого кручения была изучена ещё в 1905 г. проф. С. П, Тимошенко при рассмотрении вопроса об устойчивости плоской формы изгиба двутавровой балки ). Вопросами изгибного кручения занимался ряд советских и иностранных учёных в последующий период (Губер— 1924, В. Г. Галёркин — 1927, Вагнер— 1928, П. М. Знаменский — 1934, Л. С. Лейбензон — 1935, Блейх — 1936, Каппус— 1937). Однако в общем виде задача об изгибном кручении тонкостенных стержней открытого профиля была решена профессором  [c.532]

Эти приближенные формулы широко используют в инженерной практике при расчете на кручение тонкостенных стержней открытого профиля. Они впервые были получены при помощи мембранной аналогии Гриффитсом и Прескотом, а изложенным выше методом — Д. Ю. Пановым и Г. Ю. Джанелидзе. Эти формулы являются совершенно точными только для случая бесконечной полосы с постоянной шириной h = = onst. Во всех остальных случаях они дают лишь приближенное решение. При этом точность этого решения существенно зависит от того, насколько рассматриваемый профиль является удлиненным и искривленным, т. е. зависит от отношений и —, которыми характеризуются  [c.271]

Однако было бы поспещным удовлетвориться лишь констатированием этого факта и считать вышеприведенное заключение окончательным, В действительности оказывается, что тонкостенные стержни открытого профиля обладают дополнительными ресурсами в отношении их сопротивления кручению. Как известно, две статически эквивалентные нагрузки, приложенные к торцам таких стержней, могут вызвать в них существенно различные деформации и напряженные состояния, причем эта разница будет иметь уже не местный характер. Поэтому если решить для тонкостенных стержней открытого профиля так называемую задачу о стесненном его кручении, т. е. положить, что депланации на торцах скручиваемого стержня устранены, то жесткость его С окажется гораздо большей, чем жесткость, вычисленная по фор-.муле (144) при свободном кручении. На практике условия закрепления торцов скручиваемого стержня всегда бывают такими, что они в той или иной мере запрещают торцовые депланации.  [c.276]

Открытые профили. При свободном кручении тонкостенных стержней открытого профиля (рис. 4.9)—двутавра, тавра, швеллера, уголка и т. п., поперечное сечение которых составлено из узких прямоугольников, — применяются те же формулы (4.11) и (4.12), но в формуле (4.11) б = б , так как максимальное значение напряжения возникает в элементах сечения с наибольшей толш,иной стенки, а величина / в обеих формулах вычисляется следуюш,им образом  [c.62]

Изложенную ниже приближенную теорию расчета тонкостенного стержня открытого профиля с жестким недеформируемым контуром сечения будем называть элементарной теорией изгиб-ного или стесненного кручения. При этом стержень  [c.340]

Из формулы (17.2) вытекает, что тонкостенные стержни односвязного (или, как часто говорят, открытого) профиля, составленные из прямоугольных полос, столь же невыгодны при кручении, как и длинная прямоугольная полоса, поскольку их жесткость значительно уступает жесткости стержня с круговым поперечным сечением той же площади. Необходимо, однако, подчеркнуть, что данное заключение нельзя рассматривать как окончательное. Оказывается тонкостенные стержни открытого профиля обладают (по сравнению со стержнями иных профилей) дополнительными ресурсами в отношении сопротивления на кручение. Суть дела состоит в том, что максимальный характерный размер торца стержня — высота профиля — в данном случае существенно превосходит наименьший характерный размер стержня—толщину полок или стенки профиля. Соответственно (см. 2), две статически эквивалентные нагрузки, приложенные к его торцам, могут вызвать существенно разные поля напряжений, причем различие это не будет носить локальный характер. В частности, если решить для тонкостенного стержня открытого профиля задачу о кручении, предположив (в отличие от постановки этой задачи по Сен-Венану), что депланация на торцах устранена, то жесткость на кручение получится гораздо большей, чем результат (17.2). На практике условия закрепления торцов скручиваемых стержней всегда. (в большей или меньшей степени) запрещают депланацию. Для нетонкостенных стержней это несущественно, ибо здесь действует принцип Сен-Венана. Иначе обстоит дело для тонкостенных стержней, стеснение депланации которых (на торцах) является весьма существенным фактором, оказывающим решающее влияние на величину жесткости на кручение. Поэтому для таких стержней интерес представляет не столько задача о свободном (Сен-Венановом) их кручении, сколько задача о стесненном их кручении. Приближенное решение этой последней задачи (детально разработанное В. 3. Власовым) тесно связано с кругом идей, используемых в теории пластин и оболочек, и на этом вопросе мы здесь останавливаться более не будем.  [c.274]

Проблема стесненного кручения для тонкостенных стержней замкнутого профиля хотя и ставится, однако имеет здесь гораздо меньшее значение, чем для тонкостенных стержней открытого профиля. Объясняется это тем, что стеснение депланации на торцах не приводит в данном случае к сколь-либо С)гщественному увеличению жесткости стержня при кручении.  [c.277]

Само понятие о стесненном кручении стержня уже было дано выше (см. 11.1). Здесь следует добавить, что развитие инженерной теории стесненного кручения оказалось особенно необходимым для стержней с незамкнутым контуром сечения, которые находят широкое применение в строительстве, кораблестроении, авиастроении и т. д. Дело в том, что возникающие при стесненном кручении нормальные напряжения в таких стержнях мо-г иметь большие значения и оказывают существенное влияние на их прочность и жесткость. Общая теория деформирования тонкостенных стержней открытого профиля создана чл.-кор. АН СССР В. 3. Власовым, выда-юпщмся ученым, внесшим крупный вклад в строительную механику тонкостенных конструкщш и оболочек.  [c.321]

В этом же году были защищены три диссертации К. Ф. Ковалевым йа тему Изу еййё стесненного кручения тонкостенных стерж ней замкнутого п зофиля , В. И. Луневым на тему Вариационный и графический методы расчета тонкостенных стержней открытого профиля и Н. Ф. Бочаровым иа тему Расчет на прочность рам грузовых автомобилей . В первой из этих диссертаций автор ее описывает опыты, проведенные им над стальными и резиновыми образцами. Опыты эти показали, что стесненное кручение тонкостенных стержней замкнутого профиля всегда сопровождается значительными деформациями контура сечения, причем форма депланации сечения весьма близка к форме ее при- чистом кручении.  [c.13]

В том же 1955 г. было защищено три дессертации Н. Д. Рей-ком на тему О несущей способности и деформахХиях тонкостенных стальных балок при изгибе с кручением , А. А. Деркачевым на тему Некоторые вопросы теории тонкостенных стержней открытого профиля и П. Д. Мищенко на тему Расчет тонкостенных стержней открытого профиля с учетом сдвига срединной поверхности .  [c.14]

Дополиительиые напряжения при кручений. Если внешние силы лежат в плоскости, не проходящей через линию центров изгиба, то в стержне возникают напряжения кручения. Теорией жручения тонкостенных стержней открытого профиля мы занимались -  [c.282]

Что касается кручения, то была рассмотрена задача о скручивании трубчатых стержней с несколькими контурами, а также продольный изгиб при кручении тонкостенных стержней открытого профиля. Кавдый  [c.9]



Смотреть страницы где упоминается термин Кручение при тонкостенного стержня открытого : [c.293]    [c.325]    [c.542]    [c.132]    [c.542]    [c.301]    [c.226]    [c.276]   
Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.0 ]



ПОИСК



Гука) тонкостенных стержней с открытым профилем при свободном кручении

Депланация тонкостенных стержней с открытым профилем при свободном кручении единичная Эпюры

Изгиб и кручение тонкостенных стержней открытого профиля

Изгиб и кручение тонкостенных стержней с открытым контуром сечения

Кручение стержней

Кручение тонкостенных

Кручение тонкостенных стержней

Кручение тонкостенных стержней открытого профиля

Кручение тонкостенных стержней открытого профиля из прямоугольных и трапецеидальных полосок

Кручение тонкостенных стержней открытого профиля, в которых предотвращено искажение некоторых поперечных сечений

Кручение тонкостенных стержней с криволинейным открытым профилем

Кручение тонкостенных стержней с крннолинейным открытым профилем

Методы при кручении тонкостенных стержней с открытым профилем

Напряжения касательные при свободном кручении тонкостенных стержней с открытым профилем

Напряжения при стесненном кручении тонкостенного стержня открытого профиля

Открытие

Открытые

Открытые тонкостенные стержни

Потеря устойчивости тонкостенных стержней открытого профиля от одновременного действия изгиба и кручения

Совместный изгиб и кручение тонкостенных стержней открытого профиля

Стержень тонкостенный

Стержни тонкостенные — Тела открытые—Кручение

Стесненное кручение тонкостенных стержней открытого профиля

Стесненное кручение тонкостенных стержней открытого профиля (П. Я. Артемов) Основные понятия. Напряжения при стесненном кручении

Центр кручения тонкостенного стержня открытого профиля



© 2025 Mash-xxl.info Реклама на сайте