Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стесненное кручение тонкостенных стержней открытого профиля

При несвободном (стесненном) кручении, когда депланация сечений затруднена, приведенные выше формулы непригодны. Общая теория стесненного кручения тонкостенных стержней открытого профиля разработана В. 3. Власовым. Он показал, что при стесненном кручении кроме касательных напряжений чистого кручения, вычисляемых по приведенным выше формулам, в поперечном сечении возникают значительные дополнительные касательные и нормальные напряжения. Изложение теории стесненного кручения тонкостенных стержней выходит за пределы краткого курса сопротивления материалов.  [c.123]


Стесненное кручение тонкостенных стержней открытого профиля  [c.344]

Глава 12. СТЕСНЕННОЕ КРУЧЕНИЕ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ОТКРЫТОГО ПРОФИЛЯ  [c.334]

Общие сведения. Цель работы — ознакомление со стесненным кручением тонкостенных стержней открытого профиля. При этом следует определить экспериментально 1) напряжения в плоскости заделки тонкостенной консоли, нагруженной закручивающим моментом на конце и 2) угол закручивания. Полученные величины сравнить с их теоретическими значениями.  [c.103]

Рис. 14.5. Стесненное кручение тонкостенного стержня открытого профиля а) стержень до деформации б) стержень после деформации в) картина взаимодействия стержня с плитой заделки. Рис. 14.5. <a href="/info/5923">Стесненное кручение</a> тонкостенного стержня <a href="/info/7033">открытого профиля</a> а) стержень до деформации б) стержень после деформации в) <a href="/info/369476">картина взаимодействия</a> стержня с плитой заделки.
Теоретическое исследование изгиба и кручения тонкостенных стержней открытого профиля впервые выполнил С. П. Тимошенко (Об устойчивости плоской формы изгиба двутавровой балки. Известия СПб Политехнического института, т. IV—V, 1905—1906), при этом крутильную жесткость стержня он определил экспериментально. С. П. Тимошенко обнаружил возникновение нормальных напряжений при стесненном кручении тонкостенного стержня открытого профиля.  [c.385]

Е1 - секториальная жесткость сечения. В качестве кинематических параметров выступают угол закручивания х) и производная угла закручивания 0 х). Статическими параметрами являются бимомент В х) и изгибно-крутящий момент М х). Особенность стесненного кручения тонкостенного стержня состоит в том, что кинематический параметр х) имеет механический смысл крутящего момента (статической величины), а статические параметры В х) и М х) не определяются из уравнений статики. Согласно теории стесненного кручения тонкостенного стержня открытого профиля имеют место соотношения  [c.44]

Уменьшение нормальных напряжений стесненного кручения тонкостенных стержней открытого профиля в зоне их закрепления по торцам достигается заменой этих стержней в наиболее нагруженных зонах тонкостенными стержнями закрытого профиля и выведением зон концентрации напряжений из опасных областей (см. схемы 3.1—3.3 в табл. 3.1).  [c.25]


В главах XI и XII деформация тонкостенных стержней уже обсуждалась. В главе XI рассматривалось свободное кручение тонкостенных стержней открытого и замкнутого профиля и в главе XII — определение касательных напряжений в тонкостенных стержнях при поперечном изгибе и определение координат центра изгиба в поперечном сечении тонкостенного стержня открытого профиля. Ниже излагается теория стесненной деформации тонкостенных стержней открытого профиля.  [c.382]

В формуле (14.49)2 четвертым членом учтена доля касательного напряжения, соответствующая моменту стесненного кручения (изгибно-крутильному моменту Л4ш). Итак, в формуле (14.49) последние члены учитывают эффект стеснения деформации тонкостенного стержня открытого профиля— стеснения его депланации.  [c.406]

Рассмотрим процедуру построения соотношений МГЭ для кручения тонкостенных стержней открытого профиля. Уравнение стесненного кручения тонкостенного стержня получено проф. В.З. Власовым [63, 66]  [c.44]

Решение. Основные зависимости теории расчета тонкостенных стержней замкнутого профиля, в основу которой положены гипотезы о недеформируемо- сти контура и о возможности деформаций сдвига в срединной поверхности (в отличие от гипотезы об отсутствии сдвигов для тонкостенных стержней открытого профиля), приведены к виду, для которого записаны расчетные формулы, аналогичные применяемым в теории открытых тонкостенных стержней. Это удалось осуществить путем введения понятия обобщенной секториальной координаты ш, через которую выражаются все основные геометрические характеристики, необходимые для расчетов стержня при стесненном кручении.  [c.239]

Влияние на кручение изгибающих моментов. В тонкостенных стержнях открытого профиля возникает эффект стеснения депланации и при воздействии на стержень внешнего изгибающего момента. Следует строго разграничивать случаи образования внешнего изгибающего момента поперечными силами (как это было показано выше) и продольными силами. На рис. 14,20 показан стержень швеллерного сечения. На рис. 14.20, а изображена эпюра секторных площадей этого сечения. На рис. 14.20, б, в показаны два варианта создания изгибающего момента поперечными силами и продольными силами, действующими в одной и той же плоскости. При этом изгибающий момент, созданный поперечными силами, кручения стержня не вызывает, поскольку плоскость его действия проходит через центр изгиба. Продольные же силы, образующие изгибающий момент, вызывают кручение, поскольку сила Р, приложенная в точке В, где ордината эпюры со не равна нулю, создает бимомент В = Р(о . На рис. 14.20, г, д изображен другой случай расположения линий действия поперечных и продольных сил, создающих изгибающий момент. В этом случае момент, создаваемый поперечными силами, вызывает кручение, поскольку плоскость его действия не проходит через центр изгиба сечения, а изгибающий момент, создаваемый продольными силами, кручения не вызывает, так как в точках приложения обеих сил (точки 5 и ординаты эпюры и равны нулю, и следовательно, бимомент, соответствующий этим силам, равен нулю. Пусть момент представляется как результат  [c.415]

Задача о стесненном кручении двутавра впервые была поставлена и решена проф. С. П. Тимошенко в 1905 г. ). Однако подобные задачи привлекли внимание инженеров и исследователей лишь с конца 20-х годов, в связи с развитием авиастроения и внедрением в строительство тонкостенных конструкций. Большой вклад в теорию расчета тонкостенных стержней и оболочек внесли и советские ученые, в частности проф. В. 3. Власов, предложивший общую теорию расчета тонкостенных стержней открытого профиля (1939 г.) ). В последующие годы эта теория получила дальнейшее развитие и  [c.183]

Ввиду аналогии дифференциального уравнения (8.3.30) и формул для определения напряжений Стщ и Tjj аналогичным зависимостям для тонкостенных стержней открытого профиля все решения рассматриваемой задачи проводят, как в п. 8.3.4. Координаты точек В и Mq находят, как в п. 8.3.4, заменив О на Ж. Следует отметить, что длина участка стесненного кручения (например, у заделки) стержня замкнутого профиля меньше чем стержня открытого профиля. Эффект стесненного кручения у стержней с замкнутым сечением носит локальный характер.  [c.43]


Как известно, в теории тонкостенных стержней открытого профиля, принадлежащей В. 3. Власову [1], уравнение стесненного кручения имеет следующий вид  [c.37]

В 7 гл. II при обсуждении вопроса о затухании нормальных напряжений, соответствующих стесненному кручению тонкостенных стержней с открытым профилем, были отмечены такие задачи, в которых указанная система напряжений статически необходима и в связи с этим затухает весьма медленно. Этим задачам соответствует пренебрежение жесткостью свободного кручения (С=0).  [c.134]

Это позволяет заранее предвидеть, что затухание системы нормальных напряжений при стесненном кручении тонкостенного стержня с закрытым профилем должно быть лучше согласовано с принципом Сен-Венана, нежели в задаче о кручении стержней с открытым профилем.  [c.134]

Для тонкостенных стержней в основном остаются справедливыми формулы при растяжении, кручении, изгибе, ранее используемые для стержней сплошного сечения. Но, как правило, в тонкостенных стержнях поперечные сечения не остаются плоскими, происходит депланация сечений. Особенно заметная депланация происходит в стержнях с открытым профилем. Если по условиям закрепления или нагружения стержня возникают препятствия депланациям сечений, то при кручении таких стержней, которое обычно называют стесненным или неравномерным, появляются существенные нормальные напряжения, а при изгибе—дополнительные касательные напряжения, которые необходимо учитывать при расчетах на прочность.  [c.235]

В этом же году были защищены три диссертации К. Ф. Ковалевым йа тему Изу еййё стесненного кручения тонкостенных стерж ней замкнутого п зофиля , В. И. Луневым на тему Вариационный и графический методы расчета тонкостенных стержней открытого профиля и Н. Ф. Бочаровым иа тему Расчет на прочность рам грузовых автомобилей . В первой из этих диссертаций автор ее описывает опыты, проведенные им над стальными и резиновыми образцами. Опыты эти показали, что стесненное кручение тонкостенных стержней замкнутого профиля всегда сопровождается значительными деформациями контура сечения, причем форма депланации сечения весьма близка к форме ее при- чистом кручении.  [c.13]

Предварительные замечания. В настоящем параграфе обсуждается теория тонкостенных стержней открытого профиля, в которой одновременно рассматриваются осевая деформация, поперечные изгибы в двух ортогональных плоскостях и кручение. Качественно новым по сравнению с ранее (в предыдущих главах) рассмотренными результатами является учет стеснения деплана-ции. Последний можно было бы выполнить независимо от осевой деформации и изгиба. Однако представляет интерес сам факт одновременного построения теории всех видов деформации, в связи с чем именно такое изложение и принято в настоящем параграфе. К тому же становится ясным, что излагаемая теория тонкостенных стержней является обобщением ранее изложенной теории стержней в случае их тонкостенности (имеются в виду стержни открытого профиля).  [c.385]

Д и ф ф е рвндиальноа уравнение углов закручивания тонкостенного стержня открытого профиля при стесненном кручении  [c.211]

Однако было бы поспещным удовлетвориться лишь констатированием этого факта и считать вышеприведенное заключение окончательным, В действительности оказывается, что тонкостенные стержни открытого профиля обладают дополнительными ресурсами в отношении их сопротивления кручению. Как известно, две статически эквивалентные нагрузки, приложенные к торцам таких стержней, могут вызвать в них существенно различные деформации и напряженные состояния, причем эта разница будет иметь уже не местный характер. Поэтому если решить для тонкостенных стержней открытого профиля так называемую задачу о стесненном его кручении, т. е. положить, что депланации на торцах скручиваемого стержня устранены, то жесткость его С окажется гораздо большей, чем жесткость, вычисленная по фор-.муле (144) при свободном кручении. На практике условия закрепления торцов скручиваемого стержня всегда бывают такими, что они в той или иной мере запрещают торцовые депланации.  [c.276]

Изложенную ниже приближенную теорию расчета тонкостенного стержня открытого профиля с жестким недеформируемым контуром сечения будем называть элементарной теорией изгиб-ного или стесненного кручения. При этом стержень  [c.340]

Из формулы (17.2) вытекает, что тонкостенные стержни односвязного (или, как часто говорят, открытого) профиля, составленные из прямоугольных полос, столь же невыгодны при кручении, как и длинная прямоугольная полоса, поскольку их жесткость значительно уступает жесткости стержня с круговым поперечным сечением той же площади. Необходимо, однако, подчеркнуть, что данное заключение нельзя рассматривать как окончательное. Оказывается тонкостенные стержни открытого профиля обладают (по сравнению со стержнями иных профилей) дополнительными ресурсами в отношении сопротивления на кручение. Суть дела состоит в том, что максимальный характерный размер торца стержня — высота профиля — в данном случае существенно превосходит наименьший характерный размер стержня—толщину полок или стенки профиля. Соответственно (см. 2), две статически эквивалентные нагрузки, приложенные к его торцам, могут вызвать существенно разные поля напряжений, причем различие это не будет носить локальный характер. В частности, если решить для тонкостенного стержня открытого профиля задачу о кручении, предположив (в отличие от постановки этой задачи по Сен-Венану), что депланация на торцах устранена, то жесткость на кручение получится гораздо большей, чем результат (17.2). На практике условия закрепления торцов скручиваемых стержней всегда. (в большей или меньшей степени) запрещают депланацию. Для нетонкостенных стержней это несущественно, ибо здесь действует принцип Сен-Венана. Иначе обстоит дело для тонкостенных стержней, стеснение депланации которых (на торцах) является весьма существенным фактором, оказывающим решающее влияние на величину жесткости на кручение. Поэтому для таких стержней интерес представляет не столько задача о свободном (Сен-Венановом) их кручении, сколько задача о стесненном их кручении. Приближенное решение этой последней задачи (детально разработанное В. 3. Власовым) тесно связано с кругом идей, используемых в теории пластин и оболочек, и на этом вопросе мы здесь останавливаться более не будем.  [c.274]


Проблема стесненного кручения для тонкостенных стержней замкнутого профиля хотя и ставится, однако имеет здесь гораздо меньшее значение, чем для тонкостенных стержней открытого профиля. Объясняется это тем, что стеснение депланации на торцах не приводит в данном случае к сколь-либо С)гщественному увеличению жесткости стержня при кручении.  [c.277]

Само понятие о стесненном кручении стержня уже было дано выше (см. 11.1). Здесь следует добавить, что развитие инженерной теории стесненного кручения оказалось особенно необходимым для стержней с незамкнутым контуром сечения, которые находят широкое применение в строительстве, кораблестроении, авиастроении и т. д. Дело в том, что возникающие при стесненном кручении нормальные напряжения в таких стержнях мо-г иметь большие значения и оказывают существенное влияние на их прочность и жесткость. Общая теория деформирования тонкостенных стержней открытого профиля создана чл.-кор. АН СССР В. 3. Власовым, выда-юпщмся ученым, внесшим крупный вклад в строительную механику тонкостенных конструкщш и оболочек.  [c.321]

В ряде зарубежных работ, опубликованных в 1921—1926 гг., рассмотрена проблема стесненного кручения тонкостенных стержней двухполочного открытого профиля (швеллер, зетовое сечение, разнополочный двутавр). По существу, в этих работах содержится лишь развитие идеи, которая была положена в основу уравнения (6).  [c.203]

В 1948 же году появилась книга проф. Я. А. Пратусевича Вариа-< ционные методы в строительной механике , где автор достаточно элементарно излагает теорию стесненного кручения тонкостенного стержня с открытым жестким профилем.  [c.10]

При исследовании кручения значения нормальных напряжений Ov = Ог могут оказаться весьма существенными. Кручение называется свободным, если роль нормальных напряжений в общей деформации бруса мала в сравнении с ролью касательных напряжений. В противном случае кручение называется стесненным. Стесненность кручения связана со стеснением депланацин поперечных сечений. Например, полый круглый стержень (тонкостенный стержень замкнутого профиля) испытывает свободное кручение без депланации поперечных сечений, как показано на рис. 13.3, а. Этот же стержень, будучи разрезанным вдоль одной из образующих открытый профиль), под действием тех же моментов закручивается с расхождением краев разреза в направлении оси, что приводит к депланации поперечных сечений. В этом случае значения малы и кручение остается свободным, при котором продольные (параллельные оси стержня) волокна не изменяют своей длины (рис. 13.3, б). Однако, если у того же разрезанного вдоль образующей стержня-трубки закреплен один на концов, а к другому приложен крутящий момент, характер напряженно-деформированного  [c.292]


Смотреть страницы где упоминается термин Стесненное кручение тонкостенных стержней открытого профиля : [c.12]    [c.307]    [c.325]    [c.325]    [c.26]    [c.31]    [c.276]    [c.293]   
Смотреть главы в:

Сопротивление материалов и основы теории упругости и пластичности  -> Стесненное кручение тонкостенных стержней открытого профиля

Сборник задач по сопротивлению материалов  -> Стесненное кручение тонкостенных стержней открытого профиля



ПОИСК



Кручение при тонкостенного стержня открытого

Кручение стержней

Кручение стесненное

Кручение тонкостенных

Кручение тонкостенных стержней

Кручение тонкостенных стержней открытого профиля

Напряжения при стесненном кручении тонкостенного стержня открытого профиля

Открытие

Открытые

Открытые профили тонкостенных стержней

Открытые тонкостенные стержни

Профили Кручение

Профили Стесненное

Профили тонкостенные открытые см Стержни тонкостенные открытые

Профили тонкостенных стержней

Профиль открытый

Профиль тонкостенный

Стержень тонкостенный

Стержни Профили

Стесненное кручение тонкостенных стержней

Стесненное кручение тонкостенных стержней открытого профиля (П. Я. Артемов) Основные понятия. Напряжения при стесненном кручении



© 2025 Mash-xxl.info Реклама на сайте