Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Центр кручения тонкостенного стержня открытого профиля

Найдем положение точки С при условии, что стержень под действием приложенной нагрузки не будет закручиваться. Точка С, как известно из 75, является центром изгиба. Этот центр имеет большое значение для поперечного изгиба балок с несимметричным сечением, а также, как будет показано ниже, для кручения тонкостенных стержней. В настоящем параграфе выведем общую приближенную формулу для определения положения центра изгиба тонкостенного сечения открытого профиля.  [c.334]


Влияние на кручение изгибающих моментов. В тонкостенных стержнях открытого профиля возникает эффект стеснения депланации и при воздействии на стержень внешнего изгибающего момента. Следует строго разграничивать случаи образования внешнего изгибающего момента поперечными силами (как это было показано выше) и продольными силами. На рис. 14,20 показан стержень швеллерного сечения. На рис. 14.20, а изображена эпюра секторных площадей этого сечения. На рис. 14.20, б, в показаны два варианта создания изгибающего момента поперечными силами и продольными силами, действующими в одной и той же плоскости. При этом изгибающий момент, созданный поперечными силами, кручения стержня не вызывает, поскольку плоскость его действия проходит через центр изгиба. Продольные же силы, образующие изгибающий момент, вызывают кручение, поскольку сила Р, приложенная в точке В, где ордината эпюры со не равна нулю, создает бимомент В = Р(о . На рис. 14.20, г, д изображен другой случай расположения линий действия поперечных и продольных сил, создающих изгибающий момент. В этом случае момент, создаваемый поперечными силами, вызывает кручение, поскольку плоскость его действия не проходит через центр изгиба сечения, а изгибающий момент, создаваемый продольными силами, кручения не вызывает, так как в точках приложения обеих сил (точки 5 и ординаты эпюры и равны нулю, и следовательно, бимомент, соответствующий этим силам, равен нулю. Пусть момент представляется как результат  [c.415]


Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.387 , c.388 , c.403 ]



ПОИСК



Кручение при тонкостенного стержня открытого

Кручение стержней

Кручение тонкостенных

Кручение тонкостенных стержней

Кручение тонкостенных стержней открытого профиля

Открытие

Открытые

Открытые профили тонкостенных стержней

Открытые тонкостенные стержни

Профили Кручение

Профили тонкостенные открытые см Стержни тонкостенные открытые

Профили тонкостенных стержней

Профиль открытый

Профиль тонкостенный

Профиль центр

Стержень тонкостенный

Стержни Профили

Центр кручения

Центр кручения тонкостенного стержня



© 2025 Mash-xxl.info Реклама на сайте