Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения при стесненном кручении тонкостенного стержня открытого профиля

Теоретическое исследование изгиба и кручения тонкостенных стержней открытого профиля впервые выполнил С. П. Тимошенко (Об устойчивости плоской формы изгиба двутавровой балки. Известия СПб Политехнического института, т. IV—V, 1905—1906), при этом крутильную жесткость стержня он определил экспериментально. С. П. Тимошенко обнаружил возникновение нормальных напряжений при стесненном кручении тонкостенного стержня открытого профиля.  [c.385]


При несвободном (стесненном) кручении, когда депланация сечений затруднена, приведенные выше формулы непригодны. Общая теория стесненного кручения тонкостенных стержней открытого профиля разработана В. 3. Власовым. Он показал, что при стесненном кручении кроме касательных напряжений чистого кручения, вычисляемых по приведенным выше формулам, в поперечном сечении возникают значительные дополнительные касательные и нормальные напряжения. Изложение теории стесненного кручения тонкостенных стержней выходит за пределы краткого курса сопротивления материалов.  [c.123]

Общие сведения. Цель работы — ознакомление со стесненным кручением тонкостенных стержней открытого профиля. При этом следует определить экспериментально 1) напряжения в плоскости заделки тонкостенной консоли, нагруженной закручивающим моментом на конце и 2) угол закручивания. Полученные величины сравнить с их теоретическими значениями.  [c.103]

Это позволяет заранее предвидеть, что затухание системы нормальных напряжений при стесненном кручении тонкостенного стержня с закрытым профилем должно быть лучше согласовано с принципом Сен-Венана, нежели в задаче о кручении стержней с открытым профилем.  [c.134]

В главах XI и XII деформация тонкостенных стержней уже обсуждалась. В главе XI рассматривалось свободное кручение тонкостенных стержней открытого и замкнутого профиля и в главе XII — определение касательных напряжений в тонкостенных стержнях при поперечном изгибе и определение координат центра изгиба в поперечном сечении тонкостенного стержня открытого профиля. Ниже излагается теория стесненной деформации тонкостенных стержней открытого профиля.  [c.382]

В 7 гл. II при обсуждении вопроса о затухании нормальных напряжений, соответствующих стесненному кручению тонкостенных стержней с открытым профилем, были отмечены такие задачи, в которых указанная система напряжений статически необходима и в связи с этим затухает весьма медленно. Этим задачам соответствует пренебрежение жесткостью свободного кручения (С=0).  [c.134]

Для тонкостенных стержней в основном остаются справедливыми формулы при растяжении, кручении, изгибе, ранее используемые для стержней сплошного сечения. Но, как правило, в тонкостенных стержнях поперечные сечения не остаются плоскими, происходит депланация сечений. Особенно заметная депланация происходит в стержнях с открытым профилем. Если по условиям закрепления или нагружения стержня возникают препятствия депланациям сечений, то при кручении таких стержней, которое обычно называют стесненным или неравномерным, появляются существенные нормальные напряжения, а при изгибе—дополнительные касательные напряжения, которые необходимо учитывать при расчетах на прочность.  [c.235]


Однако было бы поспещным удовлетвориться лишь констатированием этого факта и считать вышеприведенное заключение окончательным, В действительности оказывается, что тонкостенные стержни открытого профиля обладают дополнительными ресурсами в отношении их сопротивления кручению. Как известно, две статически эквивалентные нагрузки, приложенные к торцам таких стержней, могут вызвать в них существенно различные деформации и напряженные состояния, причем эта разница будет иметь уже не местный характер. Поэтому если решить для тонкостенных стержней открытого профиля так называемую задачу о стесненном его кручении, т. е. положить, что депланации на торцах скручиваемого стержня устранены, то жесткость его С окажется гораздо большей, чем жесткость, вычисленная по фор-.муле (144) при свободном кручении. На практике условия закрепления торцов скручиваемого стержня всегда бывают такими, что они в той или иной мере запрещают торцовые депланации.  [c.276]

Из формулы (17.2) вытекает, что тонкостенные стержни односвязного (или, как часто говорят, открытого) профиля, составленные из прямоугольных полос, столь же невыгодны при кручении, как и длинная прямоугольная полоса, поскольку их жесткость значительно уступает жесткости стержня с круговым поперечным сечением той же площади. Необходимо, однако, подчеркнуть, что данное заключение нельзя рассматривать как окончательное. Оказывается тонкостенные стержни открытого профиля обладают (по сравнению со стержнями иных профилей) дополнительными ресурсами в отношении сопротивления на кручение. Суть дела состоит в том, что максимальный характерный размер торца стержня — высота профиля — в данном случае существенно превосходит наименьший характерный размер стержня—толщину полок или стенки профиля. Соответственно (см. 2), две статически эквивалентные нагрузки, приложенные к его торцам, могут вызвать существенно разные поля напряжений, причем различие это не будет носить локальный характер. В частности, если решить для тонкостенного стержня открытого профиля задачу о кручении, предположив (в отличие от постановки этой задачи по Сен-Венану), что депланация на торцах устранена, то жесткость на кручение получится гораздо большей, чем результат (17.2). На практике условия закрепления торцов скручиваемых стержней всегда. (в большей или меньшей степени) запрещают депланацию. Для нетонкостенных стержней это несущественно, ибо здесь действует принцип Сен-Венана. Иначе обстоит дело для тонкостенных стержней, стеснение депланации которых (на торцах) является весьма существенным фактором, оказывающим решающее влияние на величину жесткости на кручение. Поэтому для таких стержней интерес представляет не столько задача о свободном (Сен-Венановом) их кручении, сколько задача о стесненном их кручении. Приближенное решение этой последней задачи (детально разработанное В. 3. Власовым) тесно связано с кругом идей, используемых в теории пластин и оболочек, и на этом вопросе мы здесь останавливаться более не будем.  [c.274]

Само понятие о стесненном кручении стержня уже было дано выше (см. 11.1). Здесь следует добавить, что развитие инженерной теории стесненного кручения оказалось особенно необходимым для стержней с незамкнутым контуром сечения, которые находят широкое применение в строительстве, кораблестроении, авиастроении и т. д. Дело в том, что возникающие при стесненном кручении нормальные напряжения в таких стержнях мо-г иметь большие значения и оказывают существенное влияние на их прочность и жесткость. Общая теория деформирования тонкостенных стержней открытого профиля создана чл.-кор. АН СССР В. 3. Власовым, выда-юпщмся ученым, внесшим крупный вклад в строительную механику тонкостенных конструкщш и оболочек.  [c.321]

Линейный характер убывания напряжений и йост)о-янство напряжения явЛяЮтся общим свдйствби тонкостенных стержней с произвольным открытым профилем, находящихся в условиях стесненного кручения, при С = 0.  [c.97]

При исследовании кручения значения нормальных напряжений Ov = Ог могут оказаться весьма существенными. Кручение называется свободным, если роль нормальных напряжений в общей деформации бруса мала в сравнении с ролью касательных напряжений. В противном случае кручение называется стесненным. Стесненность кручения связана со стеснением депланацин поперечных сечений. Например, полый круглый стержень (тонкостенный стержень замкнутого профиля) испытывает свободное кручение без депланации поперечных сечений, как показано на рис. 13.3, а. Этот же стержень, будучи разрезанным вдоль одной из образующих открытый профиль), под действием тех же моментов закручивается с расхождением краев разреза в направлении оси, что приводит к депланации поперечных сечений. В этом случае значения малы и кручение остается свободным, при котором продольные (параллельные оси стержня) волокна не изменяют своей длины (рис. 13.3, б). Однако, если у того же разрезанного вдоль образующей стержня-трубки закреплен один на концов, а к другому приложен крутящий момент, характер напряженно-деформированного  [c.292]


Пользуясь в основном предпосылками Вагнера и Блейхов, полную теорию потери устойчивости тонкостенного профиля при центральном сжатии в пределах пропорциональности дал в 1937 г. Каппус. Он рассматривает напряженное и деформированное со- стояние тонкостенного стержня при чистом и стесненном кручении. Между прочим, законом сеиториальиых площадей он пользуется еще в теории чистого кручения при определении искажений закручиваемого открытого профиля. Дифференциальные уравнения дет формаций он выводит, пользуясь энергетическим методом.  [c.7]


Смотреть страницы где упоминается термин Напряжения при стесненном кручении тонкостенного стержня открытого профиля : [c.307]    [c.325]    [c.276]    [c.293]   
Смотреть главы в:

Справочник по сопротивлению материалов  -> Напряжения при стесненном кручении тонкостенного стержня открытого профиля



ПОИСК



Кручение при тонкостенного стержня открытого

Кручение стержней

Кручение стесненное

Кручение тонкостенных

Кручение тонкостенных стержней

Кручение тонкостенных стержней открытого профиля

Напряжение в кручении

Напряжения в в тонкостенных стержнях

Открытие

Открытые

Открытые профили тонкостенных стержней

Открытые тонкостенные стержни

Профили Кручение

Профили Стесненное

Профили тонкостенные открытые см Стержни тонкостенные открытые

Профили тонкостенных стержней

Профиль открытый

Профиль тонкостенный

Стержень тонкостенный

Стержни Профили

Стесненное кручение тонкостенных стержней

Стесненное кручение тонкостенных стержней открытого профиля

Стесненное кручение тонкостенных стержней открытого профиля (П. Я. Артемов) Основные понятия. Напряжения при стесненном кручении



© 2025 Mash-xxl.info Реклама на сайте