Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементарная работа силы на возможном перемещении. Идеальные связи

ЭЛЕМЕНТАРНАЯ РАБОТА СИЛЫ НА ВОЗМОЖНОМ ПЕРЕМЕЩЕНИИ. ИДЕАЛЬНЫЕ СВЯЗИ  [c.373]

Такие связи и называют идеальными, или совершенными. Следовательно, идеальными связями механической системы называют такие связи, при которых сумма элементарных работ сил реакций связей равна нулю на любом возможном перемещении системы.  [c.329]

В силу идеальности связей сумма элементарных работ их реакций на возможном перемещении обращается в нуль  [c.780]


Так как сумма элементарных работ внутренних сил и сумма работ всех сил реакций идеальных связей на возможных перемещениях равна нулю, то  [c.309]

Принцип возможных перемещений, или принцип Лагранжа, содержит необходимые и достаточные условия равновесия некоторых механических систем. Он формулируется следующим образом для равновесия механической системы, подчиненной идеальным, стационарным ы неосвобождающим связям, необходимо и достаточно, чтобы сумма -элементарных работ всех активных сил, приложенных к точкам системы, была равна нулю на любом возможном перемещении системы, если скорости точек системы в рассматриваемый момент времени равны нулю, т. е.  [c.387]

Из доказанного вытекает следующий принцип возможных перемещений для равновесия механической системы с идеальными связями, необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю. Математически сформулированное условие равновесия выражается равенством (99), которое называют также уравнением возможных работ. Это равенство можно еще представить в аналитической форме (см. 87)  [c.361]

В аналитической механике большое значение имеет понятие обобщенной силы. Для формулировки этого понятия составим выражение суммы элементарных работ всех активных сил, приложенных к точка л системы (при идеальных связях), на некотором произвольном возможном перемещении, характеризуемом совокупностью каких-либо вариаций обобщенных координат (б , ..., Ьд )  [c.329]

Составляем уравнение, выражающее условие равновесия системы по принципу возможных перемещений, согласно которому сумма элементарных работ всех активных сил (при идеальных связях) должна быть равна нулю на любом возможном перемещении системы из предполагаемого положения ее равновесия.  [c.338]

Вариационный принцип Лагранжа. В соответствии с гипотезой сплошности тело может рассматриваться как система материальных точек и к нему можно применить принцип возможных перемещений Лагранжа для равновесия системы материальных точек со стационарными неосвобождающими и идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на систему активных сил на любых возможных перемещениях системы была равна нулю.  [c.122]


Если сила последовательно действует на разные точки механической системы, то её работа при конечном перемещении системы определяется как предел суммы соответствующих элементарных работ. 2. В случае идеально гладкой поверхности элементарная работа реакции связи на любом возможном перемещении точки равна нулю, т.к. сила направлена перпендикулярно к перемещению.  [c.71]

Необходимое и достаточное условие равновесия системы, подчиненной стационарным идеальным связям, заключается в равенстве нулю суммы элементарных работ задаваемых сил на любом возможном перемещении системы из рассматриваемого положения равновесия.  [c.319]

Теперь мы можем определить понятие идеальных связей. Идеальными связями называются такие связи, для которых сумма элементарных работ всех сил реакций связей на всяком возможном перемещении системы равна нулю, т. е.  [c.764]

Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ активных сил на любом возможном перемещении системы была равна нулю.  [c.179]

Принцип возможных перемещений (Иоганн Бернулли (1667—1748)). Необходимым и достаточным условием равновесия системы материальных точек, подчиненной геометрическим стационарным неосвобождающим и идеальным связям, является равенство нулю суммы элементарных работ активных сил на любом возможном перемещении системы из рассматриваемого положения равновесия, т. е.  [c.309]

Как было показано, принцип Даламбера позволяет записывать динамические уравнения движения в виде уравнений равновесия, так как при добавлении сил инерции к активным силам и силам реакций связен, действующим на систему, получается уравновешенная система сил. Но если система сил уравновешена, то к ней применим принцип возможных перемещений. Последовательное применение этих принципов к движущейся механической системе, на которую наложены идеальные стационарные голономные удерживающие связи, позволяет сформулировать принцип Даламбера— Лагранжа если к движущейся механической системе, на которую наложены идеальные стационарные голономные удерживающие связи, условно приложить силы инерции всех ее точек, то в каждый момент времени сумма элементарных работ активных сил и сил инерции равна нулю на любом возможном перемещении системы, т. е.  [c.288]

Общее уравнение кинетостатики. Объединение принципа возможных перемещений и принципа Даламбера гласит сумма элементарных работ всех активных сил, приложенных к материальной системе, подчиненной идеальным неосвобождающим связям, и сил инерции на всяком возможном перемещении равна нулю, т. е.  [c.400]

Методы решения задач механики существенно зависят от характера С. м., налаженных на систему. Эф кт действия С. м. можно учитывать введением соответствующих сил, наз. реакциями связей, при этом для определения реакций (или для их исключения) к ур-ниям равновесия или движения системы должны присоединяться ур-ния связей вида (1) или (2). С. м., для к-рых сумма элементарных работ всех реакций связей на любом возможном перемещении системы равна нулю, наз. идеальными (напр., лишённая трения поверхность или гибкая нить). Для механич. систем с идеальными С. м. можно сразу получить ур-ния равновесия или движения, не содержащие реакций связей, используя возможные перемещений принцип, Д Аламбера — Лагранжа принцип или Лагранжа уравнения механики.  [c.472]

Таким образом, мы доказали, что если механическая система С идеальными связями находится в равновесии, то действующие на нее активные силы удовлетворяют условию (110). Справедлив также и обратный вывод, т. е. если приложенные к механической системе активные силы удовлетворяют условию (110), то система находится в равновесии. Отсюда вытекает следующий принцип возможных перемещений ) для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю. Математически необходимое и достаточное условие равновесия любой механической системы выражается равенством (ПО), которое называют еще уравнением возможных работ. Это условие можно также представить в аналитической форме (см. 112)  [c.443]


Равенство (ИЗ) представляет собою общее уравнение динамики. Из него вытекает следующий принцип Даламбера — Лагранжа при движении системы с идеальными связями в каждый данный момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю.  [c.449]

Если сумма элементарных работ реакций связей, наложенных на систему, при любом возможном перемещении системы равна нулю, то такие связи называются совершенными (идеальными). Необходимое и достаточное условие равновесия системы с совершенными связями дает принцип возможных перемещений, который формулируется следующим образом для того чтобы рассматриваемое положение системы с совершенными связями являлось положением равновесия этой системы, необходимо и достаточно, чтобы сумма элементарных работ всех заданных (активных) сил, действующих на систему, при любом ее возможном перемещении из этого положения равнялась нулю.  [c.385]

Неголономные связи (21.1) называются идеальными, если элементарная работа соответствующих им сил реакций связей на любых возможных перемещениях равна нулю, т.е.  [c.197]

При изучении аналитической статики прежде всего обращается внимание на общую формулировку принципа возможных перемещений (принцип Бернулли), без уяснения которой вообще невозможно решать задаШ по аналитической статике. В основе ее лежит понятие работы силы на элементарном возможном перемещении. Поэтому прежде всего нужно выяснить, что называется возможным перемещением системы и как определяется работа силы на возможном перемещении. Причем, вначале должны быть рассмотрены системы с идеальными связями, для которых сумма работ всех сил реакций связей на любом возможном перемещении системы всегда равна нулю. После этого следует перейти к решению задач с неидеальными связями.  [c.4]

В случае идеально гладкой поверхности реакция целиком сводится к силе, нормальной к поверхности. Таким образом, если связью служит поверхность без трения, то реакция связи нормальна к связи. В этом случае элементарная работа реакции на любом возможном перемеи ении точки равна нулю, так как сила направлена перпендикулярно к перемеи ению. Подчеркнем, что по определению возможных перемещений только что сказанное верно как в случае стационарных, так и нестационарных связей. Само собой разумеется, что элементарная работа реакций на той части бесконечно малого перемещения, которая соответствует собственному перемещению связи, может быть в общем случае и не равна нулю. Точно так л<е в случае движения по идеальной абсолютно гладкой кривой реакция будет нормальна к кривой и работа реакции на возможном перемещении будет равна нулю. Если же поверхности или кривые не идеально гладки, то работа реакций не будет равна нулю. Аналогичное заключение относится к твердому телу, скользящему по плоскости. Если поверхности соприкасающихся тел идеально отполированы, реакция будет направлена по общей нормали к ним при этом работа реакции на. "юбом возможном перемещении будет равна нулю.  [c.315]

Допустим теперь, что связи, нало -ке 1ные па систему, идеальны. Это значит, что сумма элементарных работ сил реакций связей равна тождественно нулю на любом возможном перемещении системы из того или иного ее положения, занимаемого в процессе движения, т. е.  [c.358]

Условие равновесия, даваемое В. п. п., гласит для равновесия любой механич. системы с удерживающими идеальными связями необходимо и достаточно, чтобы сумма элементарных работ дегютвующих на пеё активных сил при любом возможном перемещении системы была равна нулю.  [c.301]

Таким образом, согласно общему уравнению динамики, в любой момент движения сиетемы с идеальными связями сумма элементарных работ всех активных сил н сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) час го называю г объединенным принципом Да-ламбера Лагранжа. Его можно назвать лакже общим уравнением механики. Оно в случае равновесия системы при обращении в нуль всех сил инер щи точек системы переходит в нринцин возможных перемещений старики, только пока без доказательства его достаточности для равновесия системы.  [c.400]

Принцип возможных перемещений выражает условия равновесия точки или материальной системы, находящейся под действием заданной системы активных сил и при заданных связях. Для равновесия материальной системы (в некоторой инерциальной системе отсчета), находящейся под действием активных сил и подчиненной голономным, идеальным, неосвобождающим, склерономным связям, необходимо и достаточно, чтобы сумма элементарных работ всех активных сил равнялась нулю на любом возможном перемещении сиетемы из предполагае-  [c.332]

Решение. Вследствие геометрической структуры и наложенных связей, положение системы в вертикальной плоскости определяется, очевидно, двумя углами Q и ф, образуе.мымн стержнями ОА и ОС с вертикалью (рпс. 257). Условием равновесия системы является равенство нулю суммы элементарных работ активных сил (при идеальных связях) на любом возможном перемещении системы из положения равновесия. Обобщенными координатами системы являются qi = Э, = ф возможные перемещения системы выражаются их произвольными ыалы ми приращениями fio, бф.  [c.339]


Таким образом, согласно общему уравнению динамики, в любой момент двиэ сения системы с идеальными связями сумма элементарных работ всех активных сил и сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) часто называют объединенным принципом Даламбера —Лагранжа. Его можно на-  [c.386]

Принцип возможных перемещений может быть сформулирован следующим образом для равновесия механической системы с удержива-юш,ими идеальными стационарными связями необходимо и достаточно, чтобы сумма элементарных работ всех активных сил, приложенных к системе, на всяком возможном перемещении системы равнялась нулю. Математически принцип возможных перемещений выражается условием  [c.766]

Р авенство (2) или (3) и представляет собой общее уравнение динамики. Оно получено путем соединения двух общих принципов механики принципа Даламбера с принципом возможных перемещений, связанным с именем Лагранжа. Поэтому общее уравнение динамики иногда называется уравнением Лагранжа — Даламбера. Из него следует, что при любом движении механической системы с идеальными удерживающими связями в каждый данный момент сумма элементарных работ всех активных сил и всех условно приложенных сил инерции на всяком возможном перемещении системы равна нулю. При этом возможные перемещения нужно брать для фиксированного положения системы, соответствующего рассматриваемому моменту.  [c.780]

Принцнп возможных перемещений. Для того чтобы система, подчиненная идеальным удерживающим связям, находилась в равновесии, необходимо и достаточно, чтобы сумма элементарных работ всех приложенных к ней сил на всяком возможном перемещении равнялась нулю  [c.368]

Метод Ритца—Тим )шекко основан на использовании известною лз курса теоретической механики принципа возможных перемещений для равновесия системы, подчиненной идеальным удерживающим связям, необходимо и достаточно, чтобы сумма элементарных работ всех приложенных к ней сил на всяком возможном перемещении равнялась нулю.  [c.151]

Д АЛАМБЕРА - ЛАГРАНЖА ПРИНЦИП [по имени франц. математика и философа Ж. Д Аламбера (J. D Alembert, 1717— 1783) и по имени франц. математика и механика Ж. Л. Лагранжа (J. Lagrange, 1736- 1813)] - один из основных принципов механики, обьединяю-щий возможных перемещений принцип и Д Аламбера принцип. Согласно Д., если к действующим на точки механической системы активным силам присоединить силы инерции, то при движении механической системы с идеальными связями (см. Связи) сумма элементарных работ активных сил и сил инерции на любом возможном перемещении системы равна нулю. Д. выражается равенством, которое наз. общим уравнением механики  [c.85]


Смотреть страницы где упоминается термин Элементарная работа силы на возможном перемещении. Идеальные связи : [c.264]    [c.483]    [c.303]    [c.246]    [c.72]   
Смотреть главы в:

Курс теоретической механики  -> Элементарная работа силы на возможном перемещении. Идеальные связи

Курс теоретической механики 1983  -> Элементарная работа силы на возможном перемещении. Идеальные связи



ПОИСК



Возможная работа силы

Возможное перемещение и работа

Возможные перемещения

Возможные перемещения, возможная работа

Возможные перемещения. Идеальные связи

Перемещение элементарное

Работа возможная

Работа силы

Работа силы (см. элементарная работа силы)

Работа силы на перемещении

Работа силы элементарная

Работа элементарная

Связи и возможные перемещения

Связи идеальные

Сила связи

Силы идеальные



© 2025 Mash-xxl.info Реклама на сайте