Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптимизационное проектирование

Таким образом, рассматриваемая дисциплина является научным фундаментом оптимизационного проектирования механизмов и машин.  [c.3]

КАК МЕТОД ОПТИМИЗАЦИОННОГО ПРОЕКТИРОВАНИЯ НА ПРЕДВАРИТЕЛЬНОМ ЭТАПЕ  [c.3]

Решение задач оптимизационного проектирования связано с отыскиванием экстремумов одного или нескольких критериев качества Ф(,(а) в многомерных пространствах, когда число варьируемых параметров aj( =l,, г) —составляющих вектора а—достигает десятков. В настоящей работе вся методика и примеры рассматриваются для случая, когда к—1, и в дальнейшем будем говорить о Ф (а).  [c.3]


Предлагаемый комбинированный метод реализован в виде подпрограммы на языке ФОРТРАН-4 для ЭВМ и входит в комплексную программу автоматического оптимизационного проектирования всей коробки скоростей [1]. Работа подпрограммы рассмотрена на укрупненной блок-схеме (рис. 4).  [c.33]

Вначале (гл. 1) даны общие представления о САПР как о сложной организационно-технической системе и перспективах ее развития. Затем анализируются традиционные процессы проектирования ЭМП и возможности их преобразований в САПР (гл. 2). В гл. 3 на основе анализа обобщенной модели ЭМП формализуются задачи проектирования и приводятся к виду, удобному для решения на ЭВМ. Показывается, что задачи проектирования ЭМП по сути являются оптимизационными. В гл. 4 дается краткий обзор методов расчетного моделирования ЭМП. Часть методов, особенно теоретического плана, достаточно подробно описывается в специальных учебных курсах по ЭМП. Однако здесь целесообразно изложить основные идеи методов по классам, чтобы показать имеющиеся широкие возможности для составления семейства моделей ЭМП в САПР. Значительное внимание уделяется новым, нетрадиционным для электромеханики методам (статистическим, кибернетическим и численным).  [c.4]

Несмотря на определенные успехи, достигнутые в решении частных задач проектирования ЭМУ с помощью ЭВМ, это не повлекло за собой ожидаемого и столь необходимого коренного улучшения проектного дела применительно к рассматриваемому классу объектов. Действительно, если ЭВМ находят применение в решении только некоторой части проектных задач, то высокие результаты и сокращение времени их получения могут нивелироваться на других неавтоматизированных этапах. Например, для документирования результатов оптимизационных расчетов, полученных на ЭВМ в течение десятков минут, может потребоваться несколько человеко-дней труда техников, выполняющих неавтоматизированные чертежные работы. А выполнение тех же оптимизационных расчетов без учета реально существующего разброса значений параметров объекта приводит к необходимости длительной доработки проекта по результатам испытаний многих опытных и серийных образцов продукции, что увеличивает время и стоимость проектирования. В современных условиях положение усугубляется трудовые ресурсы весьма ограничены и экстенсивный путь рещения проблем проектирования принципиально невозможен. Кроме  [c.19]

Так, например, описание конструкции аналога, найденного на начальном этапе проектирования, служит в качестве входной информации при формировании эскиза конструкции проектируемого объекта, данные которого, в свою очередь, являются входными для проведения оптимизационных расчетов и т.д.  [c.75]


Одним из основных условий успешной реализации задач структурного синтеза в САПР является наличие методов, обеспечивающих поиск решения, близкого к оптимальному, с приемлемыми затратами вычислительных ресурсов. В настоящее время для ре-щения оптимизационных задач концептуального проектирования и логистики используют следующие подходы.  [c.207]

Разным этапам проектирования соответствуют теплогидравлические расчеты разной степени сложности и точности. По степени детальности получаемой информации расчеты целесообразно разделить на оценочные, одномерные, двух-и трехмерные. По цели — расчет геометрических характеристик ПГ на заданные параметры, определение параметров заданного ПГ и определение оптимальных геометрических режимных характеристик ПГ. Теплогидравлические расчеты также подразделяются на проектные, поверочные и оптимизационные, степень сложности которых наилучшим образом отвечает целям расчетов.  [c.194]

Гидромеханика лопастных машин, по словам Вершинина, утонула в эмпирических стохастических формулах, которые не допускают эффективного использования ЭВМ, так как не отвечают реальным конструкциям машин [23]. Кроме того, они не позволяют установить все закономерности взаимосвязанных физических процессов, которые имеют место в лопастных гидромашинах. Это в значительной степени усложняет решение оптимизационных задач проектирования ЦН и повышения эффективности их функционирования. Особенно ощутимо отставание теории гидромеханики лопастных гидромашин на фоне развития теории электрических машин, где формализация задач выполнена на значительно высшем уровне.  [c.7]

Решение задачи оптимизации рабочих процессов создает условия для определения оптимальных значений основных технологических, кинематических и энергосиловых параметров новой техники. Оно обеспечивает также необходимые предпосылки для оптимизационного синтеза рабочих механизмов и выполнения проектно-конструкторских работ по созданию и использованию автоматизированных систем машин и систем проектирования новой техники с использованием автоматизированных манипуляторов и промышленных роботов.  [c.5]

При проектировании и применении разгрузочных устройств должны быть приняты специальные меры для подавления сопутствующих колебательных процессов (см. параграфы 2 и 3) кроме того, следует учитывать, что задача уравновешивания нагрузок на входных и выходных звеньях по своим целям не совпадает с задачей уравновешивания реакций, действующих на основание машины. Нередко эти оптимизационные задачи имеют противоположные тенденции, требующие компромиссных решений.  [c.115]

Простейшая оптимизационная постановка, в теории надежности может рассматриваться как вероятностная модификация обычного критерия наименьшего веса (наименьшей стоимости). Допустим, что при проектировании мы имеем возможность распоряжаться некоторым набором конструктивных параметров, характеризующих форму и размеры элементов, тип и структуру соединений и т.п. Вектор конструктивных параметров обозначим через а, а область его допустимых значений - через А. В качестве целевой функции С(а) возьмем массу или объем конструкции или ее стоимость. Функцию С(а) в дальнейшем будем называть просто стоимостью. Критерий для нахождения вектора конструктивных параметров а имеет вид  [c.58]

Усложнение моделей оптимизации и применяемых методов расчета конструкций выявило потребность в новых, более мощных, чем методы МП, средствах численной реализации оптимизационных моделей. В связи с этим в рассматриваемый период широкое распространение приобретают методы случайного поиска оптимума, в частности метод планирования многофакторных экспериментов [9, 108, 149 и др.]. В целом рассматриваемый период можно оценить как этап осознания важного прикладного значения теории и методов ОПК из композитов. В пользу этого вывода свидетельствует, во-первых, наблюдаемое смещение акцентов в сторону более глубокого анализа различных аспектов постановки и результатов решения конкретных задач оптимизации, а во-вторых, наметившаяся тенденция к разработке общего подхода к проблеме оптимального проектирования конструкций из композитов [19]. В известной степени упомянутая тенденция нашла свое отражение и в настоящей книге, основу которой составляют результаты, полученные в лаборатории моделирования процессов потери устойчивости тонкостенных конструкций Института механики полимеров АН Латвийской ССР. При этом авторы ни в коей мере не претендуют на полноту изложения всех затронутых в книге вопросов, отчетливо сознавая, что в рамках одной книги это сделать практически невозможно.  [c.13]


А, является принципиальным при оптимальном проектировании конструкций из композитов, с практической точки зрения его принципиальный характер обусловлен органической связью с технологической реализацией оптимума конкретного проекта, а с позиций теории — с проблемами существования и достижимости глобальных решений соответствующих оптимизационных задач. Для многослойных композитов понятия направление армирования и угол укладки монослоя являются синонимичными. Следовательно, вопрос о минимальном необходимом числе направлений армирования для многослойного композита есть вопрос о минимальном необходимом числе М различных типов структурных элементов, позволяющих получить любую возможную реализацию А.  [c.200]

В третьей новой части учебника изложены основые вопросы теории технблогических машин-автоматов, автоматических линий и промышленных роботов. Создание современных технологических машин является процессом синтеза оптимального варианта, поэтому в курсе освещены методы оптимизационного проектирования автоматических машин и линий, основы теории циклограммирования машин-автоматов, систем управления и методы расчета механических систем промышленных роботов.  [c.4]

Такие оптимизационные технологические задачи решаются на основе использования расчетных, аналитических методов проектирования технологического процесса сварки. При разработке технологического процесса изготовления сложной сварной конструкции целесообразен расчет нескольких вариантов технологии на ЭВМ с последующим отбором оптимального варианта технологом-сварш,иком.  [c.5]

К числу оптимизационных задач по подшипникам качения относятся оптимизация зазора, формы профилей, соотношения радиусов профилей и шариков, стрелки выпуклости бомбинированных роликов. Состояние системы САПР подшипников качения позволяет автоматическое проектирование включая графику серийных подшипников.  [c.358]

Неопределенность в формуловке цели поиска является следствием неполностью сформулированной задачи оптимизации, в которой отсутствует информация об имеющихся или предпочтительных связях между составляющими Hq. Подобные задачи считаются некорректными в оптимизационном смысле и для своего решения требуют дополнительных преобразований и исследований. При этом, в первую очередь, следует выяснить возможности использования известных методов решения корректных (однокритериальных) задач оптимального проектирования.  [c.136]

Необходимо отметить, что третье направление применения ЭВМ в проектировании является универсальным и охватывает возможности первых двух, оказывая на них существенное влияние. Например, в процессе решения расчетных задач анализа и оптимизации целесообразно готовить входные данные, оценивать полученные результаты, принимать решения о путях продолжения расчетов именно в режиме диалога, ибо это позволяет во много раз сократить время решения, а в ряде случаев упростить алгоритмы оптимизационных расчетов за счет введения неформализуемых критериев предпочтения. Облегчению подготовки данных и интерпретации результатов проектирования в значительной мере способствует графическая форма их представления на устройствах ЭВМ. А органическое объединение расчетных и графических работ, характерное для эскизного конструирования ЭМУ, при автоматизированном их выполнении позволяет повысить производительность труда конструкторов в 7—10 раз. Важность такого и подобных ему эффектов от системного применения ЭВМ в проектировании становится особенно ощутимой, если принять во внимание непомерное затягивание сроков проектирования и освоения производства сложных объектов, приводящее порой к моральному устареванию изделий еще до начала их серийного производства.  [c.11]

Выбор оптимального варианта осуществляется путем оптимального расчетного проектирования на экономико-технической математической модели двигателя. После оптимизационного расчета проводятся поверочные расчеты, в процессе которых проектировщик осуществляет нормализацию и унификацию размеров, выполняет с помощью программ расчеты рабочих и пусковых характеристик. Характерно, что для оптимизационных и поверочных расчетов двигателя используется единая математическая модель.  [c.284]

Особенности работ по автоматизации проектирования высоко-использованных электрических машин автономной энергетики, проводимых во ВНИИКЭ, состоят в развитии таких направлений, как цифровое и аналого-сеточное математическое моделирование электромагнитных процессов в объектах, оптимизационные расчеты, выполняемые поисковыми методами, и геометрическое моделирование, являющееся основой создания подсистемы автоматизированного конструирования.  [c.287]

Значительный интерес в вопросах создания и применения учебных САПР представляют работы, проводимые целым рядом вузов РСФСР. Так, например, учебно-проектная САПР трансформаторов (головной разработчик — Ивановский энергетический институт) позволяет выполнять оптимизационные и поверочные расчеты, составлять техническую документацию [48]. При этом время проектирования удается сократить в 5—10 раз по сравнению с неавтоматизированным ведением проектных работ, а применение методов оптимизащ1и дает экономию 7—10% дефицитных материалов.  [c.290]

Математическая модель теплообменника. При записи расчетных соотношений предположим прежде всего, что процессы теплообмена в аппарате не сопровождаются фазовыми переходами и теплоносителями не являются жидкие металлы. Примем далее, что оптимизационные расчеты проводятся на этапе начального проектирования, и выберем в связи с этим по возможности простые формулы, пренебрегая поправками на изменеИие физических параметров, на наличие начальных участков п т. п.  [c.247]

Оптимизационные модели предназначены для выработки экономически эффективных решений по использованию располагаемых (определяемых на этапе проектирования - см. 8.2 и 8.3) возможностей ЭК для обеспечения надежности топливоснабжения потребителей, включая рациональное использование различных объемов складов и хранилищ топлива, резервов производственных мощностей, возможностей взаимозаменяемости топлива у потребителей, пропуск-, ной способности транспортных связей. При этом возможность различных возмущений и отказов в системе, в том числе крупных, учитывается укрупненно - нормативами резервов и запасов. Поэтому решения, вырабатываемые с помощью оптимизационных моделей, желательно уточнять (корректировать) с помощью имитационных моделей, анализируя последствия различного рода конкретных крупномасштабных возмущений - изменений гидрометеорологических условий (похолодание на бвльшой территории страны, уменьшение стока рек), аварий в крупных узлах производства и транспортирования энергоресурсов, срывов сроков ввода важных объектов ЭК и т.д. Чем меньше период заблаговременности формирования решений в рассматриваемом диапазоне (от месяца до 1-2 лет), тем больше необходимость использования имитационных моделей. Нужно обратить внимание на то, что в так называемых имитационных моделях, обеспечивающих изучение поведения системы при различных (анализируемых) возмущениях, для выработки управляющих воздействий используются оптимизационные процедуры (см. п. 8.4.3).  [c.425]


Выбор принципиальных проектных решений автоматизированных систем машин в целом, их структурно-компоновочных вариантов базируется на расчетах производительности, надежности, экономической эффективности, которые пока разработаны слабо и в технической литературе освещены недостаточно. Авторы книги ставят своей задачей систематизированное изложение методов выбора и обоснования оптимальных структурно-компоно-вочных решений автоматических систем машин в целом на основании сравнительных и оптимизационных расчетов производительности, надежности в работе и экономической эффективности. При этом все расчеты и обоснования рассматриваются применительно к конкретным стадиям проектирования и тем задачам, которые на этих стадиях решаются.  [c.3]

Проектирование комплексно-автоматизированных систем машин — автоматических и автоматизированных поточных линий для массового производства — является сложной оптимизационной задачей, в которой по минимальному количеству входных данных необходимо выбрать оптимальное сочетание технологических, структурных, компоновочных и конструктивных решений. Одной из наиболее ответственных стадий проектирования актоматических линий массового производства является стадия технического предложения (см. гл. 1), когда разрабатывается технология и выбирается структурно-компоновочный вариант будущей системы машин, реализующий разработанный технологический процесс.  [c.214]

Типичный пример — задача оптимального проектирования [79]. Так, при проектировании твэла, например, всегда определена экстремальная цель — полная тепловая мощность, надежность, ресурсоспособность и т. п. Оптимальное проектирование представляется как процесс определения таких параметров а= (оь а%. .., а ) конструкции, которые обеспечивают экстремум целевой функции, но не произвольно, а в пределах соблюдения определенных ограничений. Например, необходимо использовать в твэле топливо определенного вида (ограничение типа равенства) или температура и возникающие в объеме твэла напряжения нв должны превышать требуемых (ограничения типа неравенств) и т. д. Подобные оптимизационные задачи записываются в виде следующей обобщенной задачи нелинейного программирования [98, 102]  [c.15]

Часто приходится слышать, в частности от математиков, что отсутствие оптимизационной математической основы в таких системах делает их слепыми по сравнению с расчетно-оптимизационными. Однако не следует забывать о тех, кто будет работать у экранов графических дисплеев,— о конструкторах. В этом плане графоаналитическая САПР служит как бы контролером правильности действий конструктора-ироектировщика, так как задача создания новой конструкции стоит перед ним, а не перед ЭВМ. Как показывает опыт эксплуатации таких систем, в большинстве случаев за 8—10 итераций, выполненных проектировщиком, становится ясным, какой должна быть та или иная конструкция. В заключение отметим, что графоаналитические САПР в основном ориентированы на проектирование небольших узлов и деталей.  [c.16]

Из математики известно [Л. 30], что в сравнении с другими методами (например, методом штрафных функций) проекционный метод учета ограничений в оптимизационных задачах нелинейного программирования обеспечивает сходимость итерационного процесса решения за меньшее число итераций, особенно при линейных или близких к линейным ограничениям, что имеет место и в нашей задаче. Однако проекционный метод может дать выигрыш во времени решения задачи в целом лишь тогда, когда трудоемкость проектирования вектора-антиградиента на поверхность ограничений невелика.  [c.48]

В главе 13 подробно рассматривается оптимизация, начиная с формулировки задачи оптимизации. Собственно оптимизация и является основой процесса проектирования конструкции. Мощные средства анализа конструкций профам-мы NASTRAN являются лишь ядром средств оптимизации. Интерфейс FEMAP открывает доступ не ко всем возможностям аппарата оптимизации NASTRAN, однако приведенные примеры построения моделей анализа и оптимизационных моделей тонкостенных конструкций позволяют читателю изучить эту важную область.  [c.17]

Определение переменных проектирования. В процессе изменения проектных переменных программа оптимизации не знает , что она меняет структуру модели, она всего лишь выпол]1яет математический поиск. Например, единственная проектная переменная может быть использована для описания площадей поперечных сечений нескольких стержней, толщины нескольких пластин и т.д. В то время как программа изменяет эту единственную переменную, меняется вся конструкция Выражение возможных вариаций конструкции через экономичные проектные переменные является сложной частью задачи создания оптимизационной модели.  [c.484]

Перед созданием оптимизационной модели сгенерируем множество свойств Property) и ссылок на них из элементов конечно-элементной модели. Это необходимо для того, чтобы задать атрибуты данных свойств (площади поперечных сечений и толщины) в качестве переменных проектирования и ограничений. Будем считать, что толщина обшивки каждой из десяти секций, на которые разбита панель крыла, остается постоянной. Примем, также, что стенки лонжеронов имеют постоянную толщину на участках от z = О до z = 7500 и от z = 7500 до z = 15000. Толщина стенки каждой нервюры принимается постоянной. Площади поясов лонжеронов переменные по всей длине.  [c.511]

На рис. 3.93 приведены результаты оптимизационных исследований минимальных температурных напоров в паро-паровом перегревателе ПТУ на насыщенном паре, которые могут использоваться в качестве ориентира при проектировании новых ПТУ [42]. Комплекс, К,  [c.352]


Смотреть страницы где упоминается термин Оптимизационное проектирование : [c.329]    [c.419]    [c.298]    [c.105]    [c.384]    [c.147]    [c.166]    [c.10]    [c.11]    [c.484]    [c.495]    [c.14]    [c.12]    [c.253]   
Смотреть главы в:

Детали машин, курсовое проектирование  -> Оптимизационное проектирование

Детали машин Курсовое проектирование  -> Оптимизационное проектирование



ПОИСК



ПЛП-поиск как метод оптимизационного проектирования на предварительном этапе



© 2025 Mash-xxl.info Реклама на сайте