Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Истечение Степень скорости

Задача 1418. Ракета движется вертикально вверх в однородном поле силы тяжести с постоянным ускорением w. Найти разницу в расходах массы топлива за одно и то же время при наличии и отсутствии сопротивления, если сила сопротивления пропорциональна первой степени скорости. Относительная скорость истечения газов постоянна и равна и. Начальная скорость ракеты равна нулю.  [c.515]


При прочих равных условиях величина потерянной энергии пропорциональна третьей степени скорости истечения (рис. 35).  [c.72]

Маха Мо при низкочастотном акустическом возбуждении прирост ДХ/ ALq уменьшается и при Мо — 1 становится несущественным. При высокочастотном возбуждении (St = 2 - 4,5) AL/ALq — 0,1. В работе [3.23] было также показано, что при низкочастотном акустическом возбуждении наблюдается нарушение известного закона восьмой степени (рис. 3.6), который характерен для турбулентных струй при отсутствии акустического возбуждения (см. главу 1). Шум возбужденной струи пропорционален примерно шестой степени скорости ее истечения.  [c.117]

Течение в сверхзвуковой затопленной струе обычно характеризуют следующими критериями подобия степенью нерасчетности истечения п = = Ра /Роо, числом Маха на срезе сопла Mq = о / о и углом наклона контура сопла в выходном сечении Qq. Здесь ра и роо соответственно статическое давление на срезе сопла и в окружающей среде, uq и ао - скорость истечения и скорость звука. При этом различают три режима п = 1 - расчетный режим, п < 1 - режим перерасширения и п > 1 режим недорасширения.  [c.178]

Суммарная звуковая мощность струн, истекающей из сверхзвукового сопла, при достаточно высоких скоростях истечения пропорциональна третьей степени скорости W а не восьмой степени, как это имеет место для дозвуковых струй [7.6,7.13].  [c.180]

Коэффициент скорости (р согласно формуле (20-5) учитывает влияние на скорость истечения степени неравномерности распределения скоростей в сжатом сечении и гидравлических сопротивлений. Коэффициент скорости представляет отношение действительной скорости истечения к теоретической  [c.335]

Очевидно, сложное поведение зависимостей ti, = /(л ) и ti, = = /(/, ) на докритических режимах связано с ростом скорости истечения на входе в сопло, а следовательно, с увеличением уровня относительных сдвиговых скоростей в камере энергоразделения и плотности потока кинетической энергии масс газа. Действительно, с ростом степени расширения в вихревой трубе О < < л < л р происходит рост скорости истечения, а следовательно, и рост снижения термодинамической температуры. Несмотря на рост абсолютных эффектов охлаждения при изоэнтропном расширении в соответствии с зависимостью (2.18) температурная эффективность возрастает в результате более интенсивного роста эффектов охлаждения, обусловленного ростом падения термодинамической темпе >атуры потока на выходе из сопла закручивающего устройства  [c.53]


Сделаем несколько замечаний, относящихся к истечению насыщенных водяных паров через сопла. Как показывает опыт, пар, находящийся перед соплом в насыщенном состоянии, конденсируется при течении с некоторым запозданием, т. е. переходит сначала в пересыщенное состояние. Конденсация водяного пара, в результате которой степень сухости достигает равновесного при данных условиях значения, происходит обычно (при не очень больших начальных давлениях) за минимальным сечением сопла, т. е. после того, как достигнута критическая скорость, и притом очень быстро, с образованием конденсационного скачка уплотнения. Поэтому при расчетах сопел Лаваля для водяного пара необходимо принимать во внимание, что пар в суживающейся части и в- начале расширяющейся части сопла является пересыщенным (переохлажденным).  [c.320]

Если сравнить истечение через отверстие (без насадка) с истечением через насадок, то будет ясно, что на участке потока от сечения а—а до сжатого (см. рис. 6.32) движение при наличии насадка происходит под большим напором, чем при отсутствии насадка. Поэтому скорость в сжатом сечении насадка будет больше, чем в сжатом сечении за отверстием при одинаковом напоре Я. А поскольку степень сжатия струи внутри насадка и за отверстием практически одинакова, то при одинаковой площади отверстия и насадка расход через последний будет больше, чем через отверстие. Очевидно, этот выигрыш будет тем больше, чем глубже вакуум в сжатом сечении. Правда, при наличии насадка в потоке появляются дополнительные потери, которых нет в струе, вытекаюш,ей через отверстие. Это потери на расширение потока внутри насадка и потери на трение по его длине. Однако, как показывают расчеты и эксперимент, при длине насадка /н = (3. .. 4) эти потери намного меньше, чем повышение действующего напора. Поэтому данный насадок увеличивает расход. Этот эффект возрастает, если применить конический расходящийся насадок (рис. 6.34, б), в котором должен быть обеспечен безотрывный режим течения. Сведения о насадках других форм приведены в работе [1].  [c.178]

Известно, что скорость истечения водяного пара 458 м/с, его расход 0,2 кг/с и конечная степень сухости х = = 0,93. Площадь выходного сечения сопла равна 243 мм . Определить начальные параметры пара (использовать табл. 7 Приложения) и указать форму сопла.  [c.101]

Используя таблицы Приложения и формулу t i

критическом сечении сопла давление 4,5 МПа и степень сухости х = 0,915, определить критическую скорость истечения и соответствующее значение k.  [c.101]

Исходное состояние пара на si-диаграмме соответствует значению Si = 7110 кДж/кг в конце истечения это пар со степенью сухости 0,95 при температуре 45,5 °С. Известно, что критическая скорость истеченья, вычисленная без учета трения, равна 570 м/с. Определить начальные параметры пара и коэффициент потери энергии.  [c.102]

Насадок со скругленными входными кромками. Если входные кромки скруглены (рис. 10-20), то сжатие струи в насадке уменьшается и площадь сечения струи Ос увеличивается. В результате степень расширения струи от сечения С —С до сечения В —В снижается, причем потери напора уменьшаются, а следовательно, скорость истечения Vb увеличивается.  [c.396]

Адиабатное истечение. Процессы истечения паров и газов можно с достаточной степенью точности считать адиабатными, так как при значительных скоростях потока, имеющих место в соплах, время контакта газа со стенками невелико, что практически исключает теплообмен.  [c.88]

Задача 3.3. Определить степень реактивности ступени, если располагаемый теплоперепад в ступени Ло=120 кДж/кг, скоростной коэффициент сопла ф = 0,96 и действительная скорость истечения пара из сопл С] = 335 м/с.  [c.107]

Задача 3.10. В реактивной ступени пар с начальным давлением ро = 3 МПа и температурой Го = 390°С расширяется до 2=1,7 МПа. Определить действительную скорость истечения пара из сопл и окружную скорость на середине лопатки, если скоростной коэффициент сопла ф = 0,965 степень реактивности ступени р = 0,5 и отношение окружной скорости на середине лопатки к действительной скорости истечения пара из сопл и/с,-0,45.  [c.108]


Задача 3.11. В активной ступени пар с начальным давлением Ро=3 МПа и температурой о = 450°С расширяется до Pi = 1,6 МПа. Определить действительную скорость истечения пара из сопл, окружную скорость на середине лопатки и относительную скорость входа пара на лопатки, если скоростной коэффициент сопла = 0,96, угол наклона сопла к плоскости диска ai= 16°, средний диаметр ступени d=0,9 м, частота вращения вала турбины = 3000 об/мин, начальная скорость пара перед соплом Со = 150 м/с и степень реактивности ступени р = 0,12.  [c.108]

Задача 3.17. В реактивной ступени пар с начальным давлением ро 2,4 МПа и температурой /о = 360°С расширяется до р2 = = 1,6 МПа. Определить абсолютную скорость выхода пара из канала между рабочими лопатками, если скоростной коэффициент сопла (р — 0,96, отношение окружной скорости на середине лопатки к действительной скорости истечения пара из сопл и/с, = 0,45, относительная скорость выхода пара из канала между рабочими лопатками W2 = 350 м/с, угол выхода пара из рабочей лопатки 2 = 21°30 и степень реактивности ступени р-0,48.  [c.110]

МПа. Определить потери тепловой энергии в соплах и на лопатках, если скоростной коэффициент сопла <р = 0,94, скоростной коэффициент лопаток i/f = 0,89, угол наклона сопла к плоскости диска а, = 16°, отношение окружной скорости на середине лопатки к действительной скорости истечения пара из сопл u/ i = 0,44 и степень реактивности ступени р = 0,5.  [c.119]

Задача 3.31. Определить потери тепловой энергии в соплах, на лопатках и с выходной абсолютной скоростью в реактивной ступени, если энтальпия пара на входе в сопло /о = 3400 кДж/кг, энтальпия пара на выходе из сопла /j = 3250 кДж/кг, скоростной коэффициент сопла ср = 0,96, скоростной коэффициент лопаток = 0,9, угол наклона сопла к плоскости диска 1 = 15°, отношение окружной скорости на середине лопатки к действительной скорости истечения пара из сопл w/ i = 0,49, угол выхода пара из рабочей лопатки J32 = 24° и степень реактивности ступени р = 0,48.  [c.120]

Задача 3.40. Определить относительный внутренний кпд реактивной ступени со степенью реактивности р = 0,5, если скоростной коэффициент сопла ср = 0,94, угол наклона сопла к плоскости диска ai = 14°, отношение окружной скорости на середине лопатки к действительной скорости истечения пара u/ j = 0,43., относительные потери тепловой энергии на трение и вентиляцию Ств = 0,03 и относительные потери тепловой энергии от утечек С = 0,025.  [c.125]

Задача 3.48. Определить площадь выходного сечения и выходную высоту рабочих лопаток реактивной ступени, если параметры пара перед ступенью Рй — 2 МПа и о = 390°С, давление пара за ступенью 2= 1,5 МПа, скоростной коэффициент сопла < = 0,95, скоростной коэффициент лопаток / = 0,87, угол наклона сопла к плоскости диска ai = 13°, отношение окружной скорости на середине лопатки к действительной скорости истечения пара из сопл м/с, = 0,5, угол выхода пара из рабочей лопатки 2 = 20°, средний диаметр ступени /=0,85 м, степень реактивности р = 0,5, расход пара М=24 кг/с, коэффициент расхода для рабочей лопатки / 2 = 0,96 и степень парциальности впуска пара е = 0,4.  [c.130]

Задача 4.6. Определить работу 1 кг газа на лопатках в реактивной ступени, если располагаемый теплоперепад Ao=110 кДж/кг, скоростной коэффициент сопла ф = 0,965, скоростной коэффициент лопаток ф = 0, 6, угол наклона сопла к плоскости диска ai = 16°, отношение окружной скорости на середине лопатки к действительной скорости истечения газа из сопл u/ i = 0,44, угол" выхода газа из рабочей лопатки равен углу входа газа на рабочую лопатку 2 = 1 = 22° и степень реактивности ступени р = 0,5.  [c.150]

Степень приближения действительного процесса истечения к теоретическому обычно характеризуют коэффициентом скорости сопла ф, представляющим собой отношение действительной скорости истечения пара к теоретической  [c.229]

На фиг. 274 приведена диаграмма результатов испытания толкателя, показанного на фиг. 263. Кривые 1 н 2, характеризующие скорость движения поршня в зависимое ти от величин нагрузки, получены при полностью открытых регулировочных клапанах в этом случае время подъема и спуска поршня наименьшее. Кривые <3 и 4 соответствуют наполовину перекрытым золотниковым отверстиям, а кривые 5 я 6 — полностью перекрытым отверстиям. Нетрудно видеть, что степень перекрытия отверстий истечения и величина внешней нагрузки Q сильно изменяют время хода т поршня вверх и вниз. При номинальной нагрузке время подъема и спуска поршня толкателя соответствующим перекрытием золотниковых отверстий изменялось в пределах от 0,44 сек до 2 мин,  [c.453]

Тело переменной массы движется вверх с постоянным ускорением w по шероховатым прямолинейным направляющим, составляющим угол а с горизонтом. Считая, что поле силы тяжести является однородным, а сопротивление атмосферы движению тела пропорционально первой степени скорости (Ь — коэффициент сопротивления), найти закон изменения массы тела. Эффективная скорость истечения газа Ve постоянна коэффициент трения скольжения между телом н направляюшими равен /,  [c.337]


Из изложенного следует, что если оборудование, изготовленное из низколегированных сталей, работает в воде при критических температурах, концентрацию кислорода в воде необходимо уменьшать до 0,01—0,02 мг/л, так как при концентрации кислорода 0,05 мг/л возможны случаи язвенной коррозии [111,14]. Во влажном паре при температуре 260° С с увеличением концентрации кислорода за пределы 0,05 мг/л скорость коррозии низколегированных сталей увеличивается [111,29]. Если в воде содержится, кроме кислорода, углекислый газ, скорость коррозии низколегированных сталей увеличивается в тем большей степени, чем выше концентрация кислорода и углекислого газа [111,29]. Так, при длительности испытаний 50 час введение в деаэрированную воду 1,7 г/л углекислого газа увеличивает скорость коррозии стали 12X2 при температуре 300° С в три раза (см. табл. 111-2). Очевидно, это обстоятельство связано с уменьшением pH среды. Насыщение же воды угарным газом практически скорости коррозии стали 12 ХМ не изменяет (табл. II1-2). К некоторому возрастанию скорости коррозии низколегированной стали приводит увеличение скорости потока воды с 0,05 м/сек до 9,2 м/сек (см. рис. 1Н-8). Дальнейшее увеличение скорости потока до 12,2 м/сек к усилению коррозии не привело [111,14]. В потоке воды со скоростью 0,4 м/сек при температуре 310° С скорость коррозии низколегированных сталей, измеренная по количеству выделившегося водорода, равна скорости их в стати- ческих условиях. При скорости потока воды 10 м/сек скорость коррозии больше, чем в статических условиях [111,8] при скорости потока 9,2 м/сек все продукты коррозии с поверхности железа смываются и попадают в воду (прямые 1 в 4 на рис. II1-8). В полуста-тических условиях, при скорости потока 0,005 м/сек, значительная часть продуктов коррозии остается на поверхности металла, скорость поступления продуктов коррозии в воду значительно меньше, чем скорость коррозии низколегированных сталей (прямые 2 и 5 на рис. 111-8). По истечении месяца скорость поступления стали (железа) в систему при скорости воды 9,2 м/сек приблизительно в пять раз выше, чем в полустатических условиях [111,14]. Авторы указывают, что в процессе работы оборудования из углеродистой стали при температуре 316° С концентрации как растворенных, так и нерастворенных в воде продуктов коррозии железа были приблизительно равны и составляли 0,05 мг/л. Значительное количество их поступало в воду при изменении режима работы контура.  [c.109]

Для звёзд с наиб, сильным истечением (звёзды Вольфа—Райе, массивные протозвёзды, напр., IB 10216 (см. Звездообразование), холодные звё.зды с сильным истечением] значит, скорости истечения наблюдаются уже в фотосфере. В холодных звёздах с сильным истечением теми-ра падает наружу в такой степени, что в оттекающих оболочках образуется широкий набор молекул, наблюдаемых по радиоизлучению (см. Молекулы в атмосферах и оболочках звёзд), н, в частности, по мазерному (молекулы  [c.63]

Тело переменной массы поднимается с постоянным ускорением по шероховатой наклонной плоскости, составляющей угол а с горизонтом. Считая, что поле силы тяжести однородно, а сопротивление атмосферы движению тела пропорционально первой степени скорости, найти закон изменения массы тела. Эффективная скорость истечения газов и постоянна, коэффициент трения скольжения между телом и плоскостью = onst, коэффициент сопротивления 6 = = onst.  [c.83]

В. И. Классеи и Н. Ф. Мещеряков [5], наблюдая выделение пузырьков из пересыщенного раствора, проходящего через капилляр, отметили, что дисперсность пузырьков зависит от скорости истечения. Увеличение скорости истечения жидкости способствует диспергированию выделяющихся пузырьков, при этом его скорость должна быть не менее 10 м/с. Изучение кинетики выделения воздуха из пересыщенных растворов в воде показало, что с увеличением давления насыщения от 0,15 до 0,5 МПа количество выделяющегося воздуха (от количества растворенного) изменяется от 21 до 100%. Количество и размеры выделившихся пузырьков воздуха зависят от степени пересыщения раствора, поверхностного натяжения жидкости на границе с газом, гидродинамических условий и наличия взвешенных веществ (хлопья гидроокиси железа) в воде.  [c.61]

Подогрев газов сокращает длительность нагрева смеси до температуры воспламенен я. Скорость истечения горючей смеси надает у поверхности выходного канала мундштука при его нагревании вследствие увеличивающегося тормозящего действия нагретых стенок на поток газовой смеси (увеличивающегося трения смеси о стенки нагретой поверхности канала мундштука) и чем менее качественно обработана поверхность выходного канала мундштука, тем в большей степени. Нагреваемая поверхность канала мундштука должна быть чистой и гладкой насколько это возможно, с тем чтобы з меньшить до минимума толщину предельного слоя с малыми скоростями истечения горючей смеси 114]. С увеличением соотношения газов в смеси скорость истечения и скорость воспламенения смеси увеличиваются.  [c.59]

Степень диспергирования лакокрасочного материала при окраске пневматическим распылением зависит от скорости истечения воздуха, скорости истечения лакокрасочного материала, вязкости и поверхностного натяжения. При вязкости лакокрасочного материала выше критической диспергирования не произойдет, так как сил поверхностного натяжения будет недостаточно для образования капель даже из тонких микроструек. При правильном выборе основных параметров в факеле будут образовываться капли диаметром 6—80 мкм.  [c.193]

Распределение скоростей непосредственно по отверстиям рещеток могло бы дать наиболее точное представление о степени растекания струи по ее фронту, однако ввиду малости отверстий, поджатия в них струек и неравномерности распределения скоростей по сечению отверстий, а также значительного отклонения большинства струек от направления оси отверстий непосредственное измерение скоростей потока в них с помощью трубки Пито не представлялось возможным. Поэтому соответствующие измерения производились с помощью цилиндрической трубки, перекрывающей полностью своим торцом поочередно каждое отверстие решетки. Очевидно, при этом измерялось полное давление р,1 в отверстиях. Так как при истечении струйки из отверстия в тонкой стенке в бoльшoii объем полное давлеппе практически равно динамическому в наиболее сжатом сечении, то при этом измерении можно было вычислить скорость в сжатом сечении  [c.161]

Значение Мц = 1,05 получено при отсутствии верхнего короба, т. е. при отсутствии подсасывающего действия выходного отверстия короба. При установке верхнего короба степень неравномерности распределения скоростей по электродам несколько повышается (УИк = 1,14), так как возрастают скорости истечения через крайние правые электроды. Результаты, близкие к этим (УИк = 1,16), получены также в случае установки одлон половины уголковой решетки во второй по ходу потока половине сечения корпуса аппарата. При этом коэффициент живого сечения решетки увеличен до / -- 0,35.  [c.260]

В случае, если вход в раздающий канал данного аппарата осуществлен неилавно, например так, как показано на рис. 10.33, б, степень неравномерности распределения скоростей истечения возрастет. При неплавном входе на относительно большом расстоянии от начального сечения образуется срывная (вихревая) область, которая поджимает входную струю, повышая в ней скорость и еще больше понижая в данной зоне статическое  [c.303]


В заключение следует остановиться на термомеханическом эффекте в случае, когда свяаь между двумя объемами гелия осуществляется посредством пленки. Первые наблюдения Доунта и Мендельсона [18] показали, что в небольшом дьюаре, частично погруженном в Не II, уровень жидкости при подводе тепла во внутренний сосуд слегка поднимается. Этот эффект можно было значительно усилить [162], если увеличить связующий периметр пленки путем использования пучка проволоки (фиг. 92). Из количественных оценок скорости испарения и скорости переноса по илепке следовало, что обратное вязкое течение в пленке пренебрежимо мало. Этот же эффект изучали Чандрасекар и Мендельсон [86], использовавшие сосуд Дьюара, закрытый крышкой, не препятствовавшей свободному истечению пленки, но значительно затруднявшей перенос паров гелия. С помощью этого в высокой степени адиа-батичпого устройства было обнаружено, что до определенного предела скорость наполнения прямо пропорциональна теплоподводу (фиг. 93). При дальнейшем увеличении мощности выше этого критического значения скорость переноса уже более не увеличивалась. Эти опыты показывают, что перенос пленки под действием термомеханического давления  [c.868]

Обычно температура затормошенного газа в выходном сопле значительно выше температуры заторможенного газа в диффузоре (Г > Уд). Тогда из равенства работ компрессора и турбины вытекает, что степень уве-диченпя давления воздуха в компрессоре выше степени уменьшения давления в турбине т. е. при Т) Т1 1 имеется избыточное давление в реактивном сопле двигателя. Это необходимо для того, чтобы скорость истечения из сопла Ша и соответственно реактивная тяга были достаточно велики (как на старте, так и в полете). Турбореактивный двигатель развивает обычно значительную стартовую тягу.  [c.57]

Рис. 7.22. Влияние скорости истечения Мо и степени предварительного подогрева 0 на положение полюса осесимметричной струи по опытным данным Б. А. Жесткова, М. М. Максимова и др. Рис. 7.22. <a href="/info/521910">Влияние скорости</a> истечения Мо и степени предварительного подогрева 0 на положение полюса <a href="/info/26565">осесимметричной струи</a> по <a href="/info/447243">опытным данным</a> Б. А. Жесткова, М. М. Максимова и др.
Задача 3.7. В реактивной ступени пар с начальным давлением Ро=1,6МПа и температурой fo = 450° расширяется до Р2= МПа. Определить действительную скорость истечения пара из сопл, если скоростной коэффициент сопла tp = 0,95 и степень реактивности ступени /з = 0,5.  [c.108]

Задача 3.26. Определить работу 1 кг пара на лопатках в реактивной ступени, если располагаемый теплоперепад в ступени Ао=240 кДж/кг, скоростной коэффициент сопла ф = 0,96, скоростной коэффициент лопаток ф = 0,9, угол наклона сопла к плоскости диска 1 = 16°, отношение окружной скорости на середине лопатки к действительной скорости истечения пара из сопл uj i —0,44, относительная скорость входа пара на лопатки Wi=260 м/с, угол выхода пара из рабочей лопатки 2 = 1 —2° и степень реактивности ступени р = 0,48.  [c.116]

Задача 4.4. В реактивной ступени газ с начальным давлением />0 = 0,29 МПа и температурой /о=820°С расширяется до 2 = 0,15 МПа. Построить треугольник скоростей, если скоростной коэффициент сопла ф = 0,965, угол наклона сопла к плоскости диска t = T, скоростной коэффициент лопаток ф = 0,Ю5, отношение окружной скорости на середине лопатки к действительной скорости истечения газа из сопл и/с, = 0,5, угол выхода газа из рабочей лопатки 2 = 20°, степень реактивности ступени р = 0,48, показатель адиабаты к=, ЪА и газовая постоянная Л = 288 ДжДкг К).  [c.149]


Смотреть страницы где упоминается термин Истечение Степень скорости : [c.406]    [c.504]    [c.504]    [c.56]   
Машиностроение Энциклопедический справочник Раздел 4 Том 13 (1949) -- [ c.136 ]



ПОИСК



Истечение

Скорость истечения



© 2025 Mash-xxl.info Реклама на сайте