Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость истечения эффективная

Ре — эффективная скорость истечения.  [c.333]

Ракета стартует с Луны вертикально к ее поверхности. Эффективная скорость истечения Не = 2000 м/с. Число Циолковского 2 = 5 ). Определить, какое должно быть время сгорания топлива, чтобы ракета достигла скорости о =3000 м/с (принять, что ускорение силы тяжести вблизи Луны постоянно и равно 1,62 м/с ).  [c.334]

Эффективная скорость истечения газов из ракеты Не =2,4 км/с. Какой процент должен составлять вес топлива от стартового веса ракеты, чтобы ракета, движущаяся вне поля тяготения и вне атмосферы, приобрела скорость 9 км/с  [c.334]


Ракета движется поступательно при отсутствии тяготения и сопротивления среды. Эффективная скорость истечения газов ц = 2400 м/с. Определить число Циолковского, если в  [c.334]

Тело переменной массы, имел начальную скорость, равную нулю, движется с постоянным ускорением т по горизонтальным направляющим. Эффективная скорость истечения газов Не постоянна. Определить, пренебрегая сопротивлением, путь, пройденный телом до того момента, когда его масса уменьшится в к раз.  [c.335]

Ракета движется прямолинейно вне поля тяготения и при отсутствии сопротивления. Найти работу силы тяги к моменту, когда сгорит все топливо. Начальная масса ракеты то, конечная — mj. Эффективная скорость истечения Ve постоянна.  [c.336]

Трехступенчатая ракета движется поступательно при отсутствии тяготения и сопротивления атмосферы. Эффективные скорости истечения и числа Циолковского для всех ступеней одинаковы и соответственно равны = 2500 м/с, 2 = 4. Определить скорости ракеты после сгорания горючего в первой ступени, во второй и в третьей.  [c.336]

Найти закон изменения массы ракеты, начавшей движение вертикально вверх с нулевой начальной скоростью, если ее ускорение ш постоянно, а сопротивление среды пропорционально квадрату скорости (Ь — коэффициент пропорциональности), Поле силы тяжести считать однородным. Эффективная скорость истечения газа ве постоянна.  [c.337]

Предполагая, что эффективная скорость истечения газов Ve постоянна но величине и направлению, определить, каково должно быть отношение начальной массы ракеты к массе ракеты без топлива (число Циолковского), если к моменту сгорания топлива ракета оказалась на расстоянии Н от указанной выше касательной плоскости.  [c.337]

Для быстрого сообщения ротору гироскопа необходимого числа оборотов применяется реактивный запуск. В тело ротора вделываются пороховые шашки общей массой та, продукты сгорания которых выбрасываются через специальные сопла. Принять пороховые шашки за точки, расположенные на расстоянии г от оси вращения ротора. Касательная составляющая эффективной скорости истечения продуктов сгорания у постоянна.  [c.339]

Очевидно, сложное поведение зависимостей ti, = /(л ) и ti, = = /(/, ) на докритических режимах связано с ростом скорости истечения на входе в сопло, а следовательно, с увеличением уровня относительных сдвиговых скоростей в камере энергоразделения и плотности потока кинетической энергии масс газа. Действительно, с ростом степени расширения в вихревой трубе О < < л < л р происходит рост скорости истечения, а следовательно, и рост снижения термодинамической температуры. Несмотря на рост абсолютных эффектов охлаждения при изоэнтропном расширении в соответствии с зависимостью (2.18) температурная эффективность возрастает в результате более интенсивного роста эффектов охлаждения, обусловленного ростом падения термодинамической темпе >атуры потока на выходе из сопла закручивающего устройства  [c.53]


Сравним результаты численного решения (5. 6. 1)—(5. 6. 3), (5. 6. 13), (5. 6. 14) с экспериментальными данными [77]. На рис. 67, а показан профиль средней скорости V, рассчитанный для скорости истечения газа из отверстия гу = 1.6 м/с, на рис. 67, б — по экспериментальным данным. Видно, что совпадение экспериментальных II теоретических результатов довольно хорошее. Отметим, что использование /с-в-модели с соответствующими условиями на стенках трубы приводит к лучшему совпадению теоретических результатов с экспериментальными, особенно вблизи стенок, чем простая процедура расчета, в которой значение эффективной вязкости считается постоянным.  [c.226]

Зависимость коэффициентов истечения от числа Вебера. Опыты показывают, что при истечении жидкости из отверстий в газовую среду, когда имеется граница раздела двух фаз, с увеличением влияния поверхностного натяжения уменьшается как скорость истечения, так и сжатие струи, падает коэффициент скорости и возрастает коэффициент сжатия струи. Уменьшение скорости истечения с увеличением влияния поверхностного натяжения объясняется снижением эффективного (действующего) напора на величину кд (см. Введение). Из формулы (34) видно, что при малых диаметрах отверстия напор может заметно уменьшиться.  [c.319]

Выше было показано, что при истечении из отверстий нельзя достигнуть скорости больше критической. Между тем для эффективной работы паровых и газовых турбин очень важно получить как можно большую скорость истечения. В практике теплогазоснабжения такого рода задача возникает при конструировании газовых эжекционных горелок высокого давления, форсунок воздушного распыливания жидкого и пылевидного топлива и в других случаях.  [c.255]

Иногда при определении тяги двигательной установки за пределами атмосферы используется понятие эффективной скорости истечения  [c.305]

Термическая и металлургическая эффективность атомно-водородного пламени может быть оптимальна только в определённом диапазоне колебаний расхода водорода. При недостаточном притоке водорода охлаждающее воздействие эндотермической реакции не предохраняет кончики вольфрамовых электродов от оплавления и окисления, вследствие чего увеличивается их расход и нарушается устойчивость дуги. Скорость истечения водорода определяет также напряжение на дуге и характер атомно-водородного пламени. При недостаточном притоке водорода дуга горит тихо , атомно-водородное пламя уменьшается и одновременно отмечается падение напряжения на дуге до 20—35 в с соответствующим понижением тепловой мощности пламени. При нормальном притоке водорода дуга издаёт звенящий звук, пламя приобретает веерообразную форму и тепловая его мощность повышается. В этом случае напряжение на дуге колеблется в пределах от 60 до 100 в в зависимости от расстояния между концами электродов. При чрезмерно большом притоке водорода устойчивость дуги нарушается и приводит к частым её обрывам.  [c.319]

Определенный практический интерес представляет анализ энергетической эффективности двухступенчатой осевой турбины, функционирующей в составе ПТУ с промежуточной регенерацией, при которой осуществляется промежуточное регенеративное охлаждение перегретого пара, вышедшего из первой ступени турбины (вплоть до температуры насыщения). Данные такого исследования, полученные при = 0,5 кг/с в результате многократного решения задачи (5.76). .. (5.82) при варьировании давления на выходе из первой ступени р2, представлены на графиках рис. 5.10 и 5.11 в функции от приведенной изоэнтропной скорости истечения из соплового аппарата первой ступени  [c.107]

Рис. 5.10. Зависимости максимальных эффективных КПД ступеней турбины от приведенной изоэнтропной скорости истечения из соплового аппарата первой Рис. 5.10. Зависимости максимальных эффективных КПД <a href="/info/834">ступеней турбины</a> от приведенной изоэнтропной <a href="/info/27386">скорости истечения</a> из <a href="/info/235486">соплового аппарата</a> первой

Наряду с этим вывод А. А. Авдеевой о независимости эффективности смешения от скорости истечения газа при 1с не менее 0,64 слишком категоричен и потому нуждается в оговорках, которые сделаны в гл. X при обсуждении методики расчета горелок, предложенной Ю. В. Ивановым.  [c.90]

W — эффективная скорость истечения газа.  [c.48]

Характер распределения теплового потока пламени по пятну нагрева зависит от угла наклона пламени, расстояния от сопла до нагреваемой поверхности и средней скорости истечения горючей смеси и.з сопла горелки. Эффективная тепловая. мощность пламени q зависит в основном от расхода горючего газа (рис. 21). Эффективность нагрева (КПД) оценивается отношением эффективной мощности пламени к полной тепловой мощности (/ , подсчитываемой по низшей тепловодной способности горючего  [c.184]

Следует отметить, что при одинаковом значении уровня звукового давления вблизи кромки сопла Lq с 130 дБ с увеличением скорости от uq = = 10 м/с до 20 м/с эффективность высокочастотного возбуждения струи негармоническим сигналом уменьшается. Так, при uq = 10 м/с в точке x/d = 8 H2L оси струи минимум и /и при Stj, = 4 для гармонического и негармонического сигнала соответственно равен 0,9 и 0,7, в то время как при U0 = 20 м/с эти значения равны 0,92 и 0,82. Это обусловлено тем, что в обоих случаях разнятся значения v juQ, составляющие, соответственно, 1,5 и 0,75%. Для того, чтобы в обоих случаях получился одинаковый эффект при увеличении скорости истечения в два раза (от 10 до 20 м/с) следует увеличить уровень звукового давления на 6 дБ, т.е. вместо Lq = 130 дБ задать 136 дБ.  [c.105]

Дуговая плазменная струя — интенсивный источник теплоты с Бшроким диапазоном технологических свойств. Ее можно исполь зовать для нагрева, сварки или резки как электропроводных металлов (обе схемы рис. 53), так и неэлектропроводпых материалов, таких как стекло, керамика и др. (плазменная струя косвенного действия, рис. 53, б). Тепловая эффективность дуговой плазмониой струи зависит от величины сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости  [c.65]

Тело переменной массы движется по специальным направляющим, проложенным вдоль экватора. Касательное ускорение Wx = а постоянно. Не учитывая сопротивление движению, определить, во сколько раз уменьшится масса тела, когда оно сделает один оборот вокруг Земли, если эффективная скорость истечения газов Ve — onst. Каково должно быть ускорение а, чтобы после одного оборота тело приобрело первую космическую скорость Радиус Земли R.  [c.335]

Тело переменной массы движется вверх с постоянным ускорением w по шероховатым прямолинейным направляющим, составляющим угол а с горизонтом. Считая, что поле силы тяжести является однородным, а сопротивление атмосферы движению тела пропорционально первой степени скорости (Ь — коэффициент сопротивления), найти закон изменения массы тела. Эффективная скорость истечения газа Ve постоянна коэффициент трения скольжения между телом н направляюшими равен /,  [c.337]

Однако п при больших сверхкритических отношениях давлений можно использовать эжектор с нерасширяющимся соплом, в котором скорость истечения эжектируюш его газа не превышает скорости звука. Такой эжектор принято называть звуковым. Это наиболее распространенный тип эжектора, эффективно работаюш ий в широком диапазоне изменения параметров газов.  [c.495]

Для того чтобы правильно записать выражение для исходной тяги сопла (двигателя) без эжектора, по отношению к которой будем оценивать эффективность системы, следует учесть, что при работе сопла в эжекторе скорость истечения эжектиру-ющего газа (жидкости) при заданных начальных параметрах увеличивается вследствие разрежения, образующегося при входе в камеру. Если эжектор отсутствует, то скорость истечения получится меньшей, так что  [c.556]

Составить днфферскциалыюе уравнение восходящего движения ракеты. Эффективную скорость истечения газов ) считать постоянной. Масса ракеты изменяется по закону ш — /Ло/(0 (закон сгорания). Сила сопротколения воздуха является заданной фупгцяей скорости н положения ракеты R(x,x).  [c.333]

Эффективные скорости истечения первой и вгорой ступени у двухступенчатой ракеты соответственно равны =2400 м/с R oJ2>==2600 ы/с. Определить, считая, что движение, происходит вне поля тяготения н атмосферы, числа Циолковского для обеспечения конечной скорости Oi = 2400 м/с первой ступени  [c.336]

Водяная обмывка более эффективна по сравнению с паровой и пневматической обдувками, ее использование не приводит к сильному золовому износу очищаемых труб, так как скорости истечения воды из сопл невысоки. В то же время следует иметь в виду, что при водяной обмывке необходима система защиты, прерывающая подачу воды в аппарат, так как при длительном охлаждении отдельных труб экранов водой вследствие снижения их тепловос-приятия может произойти нарушение циркуляции. При водяной обмывке повышается вероятность разрыва экранных труб, испытывающих циклические тепловые нагрузки.  [c.142]

Таким образом, иечи, в которых происходит направленный прямой теплообмен, являются типичными печами с факельным режимом организации горения, поскольку по самой природе своей создание горящего факела представляет собой процесс организации растянутого горения. Этим объясняется, что при таком сжигании топлива практическая температура горения весьма существенно отличается от теоретической. Это обстоятельство заставляет повышать требования к теплотворности топлива и прибегать к подогреву топлива и воздуха перед сжиганием. Для того чтобы факел сохранял свою индивидуальность на всем протяжении зоны, где создается направленный теплообмен, каждое горелочное устройство должно быть достаточно мощным, так как малые факелы очень быстро растворяются в окружающей атмосфере. Нужная мощность факела достигается соответствующим выбором диаметра горелки и скорости истечения сред. Смешивающая способность горелки должна соответствовать потребной длине факела. По этой причине горелки для печей с развитым рабочим пространством могут быть очень простой конструкции, например даже труба в трубе. Для жидкого топлива предпочтительны форсунки высокого давления, дающие длинное сосредоточенное пламя. Выбор типа форсунки высокого давления, а также параметров распылителя (пар, воздух, сжатый газ) определяется длиной рабочего пространства печи. Для больших печей более эффективны форсунки, в которых достигаются сверхзвуковые скорости распылителя (ДМИ, УПИ-К и др.) напротив, для коротких печей более целесообразны форсунки, из которых распылитель выходит с дозвуковыми скоростями, например форсунки Шухова. Из форсунок низкого давления для печей с относительно небольшой длиной рабочего пространства более прйспо 16  [c.243]


Стационарные сильноточные П. у. В принципе коаксиальные П. у. можно сделать стационарными (работающими в непрерывном режиме), если поддерживать напряжение ц непрерывно подавать между электродами рабочее вещество. Для оптимизации процесса в случае работы на газе канал надо делать переменной ширины (рис. 4,а). Если анод сделать сплошным, то при пост, подаче рабочего вещества и непрерывном увеличении разрядного тока /р скорость истечения плазмы и кпд ускорителя сначала будут расти (уменьшается уд. вес затрат на ионизацию, нагрев плазмы и потери на стенки). Однако при нек-ром значении /р происходит вынос большой части разрядного тока за срез ускорителя, напряжение резко возрастает, падает кпд, в ускорителе возникают колебания. Наступает т. н. критич. режим. Его физ. причиной является в конечном счёте обеднение ионами прианодной области, к-рое происходит под действием объёмного электрич. поля. Такой критич. решим наиб, эффективно устраняют подачей части рабочего вещества через анод (переход в режи.м ионного токопереноса ), для чего используют не сплошной, а пористый или стержневой анод. Наиб, часто такая схема применяется в квази-стационарных П. у., работающих при мощностях Вт с длительностью импульса —1 мс.  [c.611]

А. А. Авдеева пришла к заключению. что достаточно углубить место ввода газовых струй на расстояние L = 0,64 D от выходного сечения амбразуры диаметром D для того, чтобы эффективность смешения перестала зависеть от соотношения динамических напоров потоков газа и воздуха. Этот вывод нуждается в более подробном обсуждении. Действительно, поля перемешивания в выходном сечении смесительной амбразуры имеют ровный характер во всем исследованном диапазоне скорости истечения газа из щелевой прорези центрального газового сопла (стр. 90). Создается впечатление, что процесс протекает в данном случае одинаково хорошо при различных значениях дальнобойности газовых струй, зависящей от ширины газовыпускной щели б и скорости истечения газа Wr. Однако поскольку расход газа п коэффициент избытка воздуха в опытах оставались ностояннымн, а величина Wr увеличивалась пропорционально уменьшению б, то согласно уравнению (10-6)  [c.191]

При скорости истечения влажного пара из соила l = 190 -г/се/с в опытах были получены достаточно высокие значения коэффициента сепарации гр для начальной влажности уо<20%-Недостатком испытаний являлось то, что они проводились в условиях крупнодисперсной (форсуночной) влаги на входе, при равномерном распределении степени влажности по высоте и при отсутствии рассогласования скоростей фаз. Испытания показали существенное снижение о1)-при увеличении начальной влажности. Это объясняется ирежде всего кризисными течениями пленки в жалюзийном сепараторе данной конструкции при уо>20%. Очевидно, дальнейшее совершенствование встроеииого сепаратора такого типа позволит получить достаточно эффективное средство удаления влаги из проточной части турбин.  [c.184]

Силовые установки с агрегатами усиления тяги имеют единый двигатель для горизонтального полета и совершения вертикального взлета и посадки, но на взлете и посадке используется агрегат усиления тяги (см. рис. 9). Агрегат усиления тяги может быть выполнен в виде выносного турбовентилятора или газового эжектора, обычно располагаемых в крыле самолета. Достоинствами такой силовой установки являются высокая экономичность на режимах взлета и посадки, малая скорость истечения реактивной струи и возможность применения серийных или модифицированных ТРД и ДТРД в качестве газогенераторов, причем тяга ТВА в 2,5—3 раза превышает тягу газогенератора. Однако такие силовые установки имеют большие размеры и массу, что затрудняет их размещение на самолете, особенно в крыле. Кроме того, истечение больших расходов воздуха с малыми скоростями затрудняет разгон самолета до скоростей, на которых аэродинахмические силы становятся достаточными для управления летательным аппаратом. Наконец, агрегат усиления тяги, так же как и подъемный двигатель, является дополнительным грузом для самолета на всех режимах полета, кроме взлета и посадки. Следует также отметить, что достижение высокой газодинамической эффективности турбовентилятора является очень сложной научно-технической задачей.  [c.190]

В заключение отметим, что эффективность предложенного многотрубчатого глушителя шума реактивной струи, по-видимому, может быть повышена при увеличении уровня воздействующего на нее звука, что, в частности, можно достигнуть, если скорость истечения газа из периферийных сопел будет значительно превышать скорость истечения из основного сопла. Материалы этой главы опубликованы в статье [8.6].  [c.201]


Смотреть страницы где упоминается термин Скорость истечения эффективная : [c.726]    [c.336]    [c.337]    [c.334]    [c.335]    [c.339]    [c.83]    [c.84]    [c.42]    [c.77]   
Курс теоретической механики Том2 Изд2 (1979) -- [ c.260 ]

Инженерный справочник по космической технике Издание 2 (1977) -- [ c.92 ]



ПОИСК



Истечение

Скорость Истечения эффективна абсолютная

Скорость Истечения эффективна мгновенная

Скорость Истечения эффективна относительная

Скорость Истечения эффективна первая

Скорость Истечения эффективна переносная

Скорость Истечения эффективна переносного движения

Скорость Истечения эффективна поперечная

Скорость Истечения эффективна прецессии гироскопа

Скорость Истечения эффективна радиальная

Скорость Истечения эффективна средняя

Скорость Истечения эффективна тела при плоском движени

Скорость истечения

Скорость истечения (максимальная, сверхзвуковая, эффективная)



© 2025 Mash-xxl.info Реклама на сайте