Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ванадий Соединения - Свойства

Сверхтвердые сплавы, комбинации из чистых металлов и их карбидов, обладающие высокой степенью твердости. Типичными представителями являются карбиды редких тугоплавких металлов вольфрама, тантала, молибдена, титана, циркона, хрома, ниобия, ванадия. Перечисленные металлы дают с углеродом соединения со свойствами, приведенными в табл. 3. Таким образом карбиды W , Wj , ТаС, Mo , Nb , Ti , Zr по своей твердости приближаются к твердости алмаза (тверже их только карбид бора ВС с твердостью 9,8). Приготовить ич этих карбидов изделия плавлением без ослабления их твердости в настоящее время не удается, и поэтому для использования их в технике применяют к ним обработку по т. н. ке-  [c.339]


Основными причинами разрушения трубопровода на 96 и 123-м км трассы признаны неудовлетворительные физико-механические характеристики металла труб и сварных соединений (пониженные прочность и ударная вязкость). Механические свойства оказались низкими из-за сильного загрязнения металла неметаллическими включениями, повышенного содержания в металле труб углерода, марганца и ванадия, а также вследствие отсутствия термообработки сварных соединений.  [c.58]

Изложены результаты исследования термодинамических свойств неорганических материалов — энергии Гиббса, энтальпии и энтропии образования соединении ванадия, хрома и марганца с р-элементами и закономерности их изменения в связи с положением компонентов в периодической системе элементов. Обобщены данные экспериментальных исследований и закономерности фазовых равновесий и строения диаграмм состояния в рядах систем редкоземельных металлов с германием титана и циркония в бинарных и тройных системах с тугоплавкими платиновыми металлами, тройных систем переходных металлов, в которых образуются фазы Лавеса, и тройных систем переходных металлов, содержащих тугоплавкие карбиды. Приводятся примеры использования полученных результатов при разработке новых материалов.  [c.247]

При обработке метода анализа использовалось свойство избирательного растворения ванадия различных степеней окисления в растворах щелочей. В растворах щелочи достаточно высокой концентрации растворяются соединения ванадия в степенях окисления 4 и 5, но нерастворимы соединения ванадия в степени окисления 3.  [c.102]

Свойства некоторых соединений ванадия  [c.358]

Для высокотемпературной пайки циркония можно применять припои на основе золота. Золото с цирконием реагируют при 1065 °С. Небольшое количество легирующих добавок железа, никеля, меди, образующих с золотом твердые растворы, снижает температуру пайки, но не изменяет механические свойства паяных соединений. В качестве легирующих компонентов используют также ванадий и кобальт. Эти элементы снижают температуру пайки и уменьшают растворимость циркония в припое, т. е. образуют с цирконием твердые растворы, или эвтектику, при температуре, значительно превышающей температуру панки. Для пайки циркония рекомендуются также припои системы Си—Pd с различными добавками (табл. 6).  [c.261]


Физико-химические свойства ванадия и его соединений  [c.296]

Легирование сварочной ванны реализуется введением через электродный или присадочный материал специальных легирующих элементов, например, хрома, молибдена, ванадия, никеля, ниобия и др. с целью получения необходимых заданных свойств металла швов и сварных соединений.  [c.36]

Можно предположить, как это будет показано ниже, что в этом случае происходит дополнительное охрупчивание металла околошовной зоны за счет выпадения по плоскостям скольжения дисперсных карбидов ванадия. Лишь повышение температуры отпуска сварных соединений этой стали до 700—720° С может улучшить свойства околошовной зоны.  [c.87]

Замечено, что содержание в нефти глобул эмульгированной воды препятствует (из-за специфических свойств фазовой границы) вымыванию из нефти соединений металлов, в первую очередь ванадия. Последний попадает в приготовляемое топливо (мазут) и повышает агрессивность газов сжигания. Глобулы воды препятствуют также отстаиванию механических примесей (частиц песка, солей и др.), и при перемещении нефтяного сырья в процессе переработки они вызывают эрозию оборудования. Наконец, само по себе попадание воды в аппаратуру по переработке нефти, сопровождающееся многократными испарением и конденсацией, создает условия для протекания электрохимических коррозионных процессов.  [c.14]

Решениями XXV съезда КП(Х предусматривается дальнейший рост производства цветных металлов и сплавов, продукции химической промышленности, извлечения металлов из руд, комплексность использования сырья, совершенствование наиболее эффективных технологических схем. В связи с этим хлор и его соединения в последние годы находят все более широкое применение. Реакционная способность хлора, разнообразие свойств его соединений обусловливают создание новых химических и химико-металлургических производств. Из всех методов получения титана, ванадия, ниобия, тантала, циркония, вольфрама, молибдена и других металлов метод хлорирования принят промышленностью в качестве основного. Этим методом можно наиболее полно извлекать из перерабатываемого сырья все ценные составляющие и получать металлы высокой чистоты. В ближайшее время начинается промышленное применение хлора для переработки фосфорсодержащих руд с целью извлечения из них фосфора, а также в процессах получения олова, марганца,, хрома, никеля, кобальта.  [c.4]

Карбиды щелочных металлов малоустойчивы и легко разлагаются при температурах до 800° С. Максимальной прочностью связи обладают карбиды подгрупп титана (Ti , Zr , Hf ) и ванадия (V , Nb , ТаС). Температуры плавления этих карбидов выше температур плавления соответствующих металлов. Отношение температуры плавления металла к температуре плавления карбида составляет 0,55—0,98 [23]. Такая прочность связи объясняется особенностями электронного строения этих соединений. Наибольший интерес для практики представляют металлоподобные карбиды. Важнейшие свойства их сведены в табл. 62.  [c.88]

Разработаны, новые материалы, представляющие собой сочетание металлической основы с дисперсными включениям тугоплавких окислов и применяющиеся как новые жаропрочные материалы, параметры которых более высокие, чем у чистых металлов и сплавов на их основе. В последнее время на основе тугоплавких металлов (ванадия, ниобия, молибдена и вольфрама) созданы сплавы, которые позволяют значительно расширить температурные интервалы применения новых жаропрочных материалов. И, наконец, следует отметить материалы с особыми физическими свойствами, которые создаются в условиях высоких и сверхвысоких давлений и температур, например искусственный алмаз, новые модификации простых веществ и различные соединения, способные в этих условиях менять характер химической связи. При исследовании ЭТИХ материалов успешно применяют новые методы, позволяющие определять строение и  [c.4]

Холодная дуговая сварка. Отдел сварки ЦНИИТМАШ для холодной дуговой сварки высокопрочных чугунов разработал электроды ЦЧ-4 со стержнем из стальной проволоки Св-08. В покрытие электродов введен ванадий. Наплавленный этими электродами металл представляет собой сплав, содержащий 8—10% ванадия. Этот сплав образует с высокопрочным чугуном сварное соединение с требуемыми механическими свойствами.  [c.335]


ВАНАДИЙ (V), металл V группы периодич. сист. Менделеева, порядковый номер 23 ат. в. 50,95 уд. в. 5,69 1 715°. В. отличается сродством ко многим элементам. Кислородные соединения В. (см. Ванадия соединения) многочисленны и образуют ряд от VgO до V2O5. Низшие окислы обладают щелочными свойствами, VjOj — амфотерен, а V. Oj отличается ясно выраженными кислотными свойствами. Кислородные соединения ванадия, особенно низшие, трудно восстановимы. Ванадий сам является хорошим восстановителем.  [c.178]

Группа элементов (хром, молибден, вольфрам, ниобий, титан, алюминий и ванадий) наряду с растворением в а- или у-железе образует соединения с углеродом, железом и другими элементами. Эти соединения, имеющие малую скорость коагуляции и обладающие термической стойкостью, способны сохранять механические свойства сплавов при высоких температурах в течение продолжительного времени. Кроме того, обладая ограниченной рас1Воримо-стью в твердом растворе, они участвуют в процессах термической обработки, обеспечивая дисперсионное твердение сплавов.  [c.50]

Формирование всех свойств титановых сплавов определяется главным образом фазовым составом и структурой. Например, молибден, ванадий, ниобий, тантал, называемые изоморфными 3-сга6илизаторами, с0-фаэой титана образуют непрерывный ряд твердых растворов и во всем интервале концентраций фазовый состав сплавов (в отожженном состоянии) может быть представлен лишь двумя фазами <а и (3). Подавляющее большинство других элементов (а- и (3-стабилизаторов) образуют с титаном интерметаллические соединения (как правило, бертоллидного типа). При этом даже в области твердых растворов всегда могут быть созданы условия, при которых возможно образование предвыделений этих соединений, трудно выявляемых методами структурного анализа, но оказывающих исключительно сильное влияние на физические, электрохимические и механические свойства сплавов.  [c.12]

Проведенные исследования позволили разработать новую хро-моникельмарганцевую жаропрочную сталь аустенитного класса, содержащую небольшое количество никеля [28 ]. Химический состав стали следующий 0,3—0,45% С, доО,35 % Si, 10,0—12,5% Сг, 11,5 -13,5% №, 6—11% Мп, 3,2 -4,2% А1, 1,4—2,0% V. Высокая жаропрочность разработанной стали связана с образованием гетерогенной структуры С мелкодисперсным выделением двух упрочняющих фаз интерметаллического соединения NiAl.H карбидов ванадия. Присутствие этих фаз в стали установлено рентгеноструктурным фазовым анализом. Исследовали микроструктуру и прочностные свойства стали после различных режимов термической ебработки. Образцы были изготовлены -из проката трех опытных плавок стали (№ 1, 2, 3, табл. 47). Изучалось влияние температуры и времени выдержки при закалке и старении на твердость и длительную прочность стали.  [c.171]

Сварка используется для соединения элементов конструкций, имеющих самую различную толщину. При сварке тонких сечений материала мало, и если он имеет склонность к возникновению остаточных напряжений, то наблюдающиеся дефекты являются в основном дефектами сварки при сварке толстых сечений наиболее серьезными дефектами являются трещины которые непосредственно вызываются напряжением, возникающим при объемных изменениях, в частности, в зоне термического влияния. В предельном случае сварки за один проход соединение можно получить без использования присадочного металла. В последнее время максимальное сечение, которое могло быть сварено газовой сваркой, было значительно увеличено в результате разработки и внедрения электронно-лучевой сварки, которая позволяет получить локальную зону проплавления глубиной порядка нескольких сантиметров. При соответствующем материале и отсутствии газовыделения электронно-лучевая сварка является прогрессивным процессом, однако для ее осуществления необходимо либо иметь сварочную камеру, которую можно было бы вакууми-ровать, либо обеспечить вакуум в точке сварки. Хотя, в принципе желательно, чтобы сварное соединение обладало такими же свойствами, как основной металл, на практике это не всегда возможно, и поэтому во многих случаях используют сварку с присадочным металлом, который менее склонен к образованию трещин. Примерами применяемых при сварке присадочных металлов, которые отличаются по составу от основного металла, являются сталь с 2,25% Сг и 1% Мо для сварки 0,5% Сг, Мо, V сталей сталь с контролируемым содержанпем феррита для сварки аусте-нитных сталей и специальные электроды типа In o А для никелевых сплавов. Много попыток было сделано, чтобы разработать электроды для 0,5% Сг, Мо, V сталей, однако наплавленный металл этого состава имел очень низкую пластичность и, кроме того, приобретал высокое сопротивление деформации при выпадении карбида ванадия, повышающего склонность к образованию  [c.72]

При сжигании жидких топлив коррозия и загрязнение поверхностен нагрева тесно связаны друг с другом. С одной стороны, образование главного коррозионного агента ЗОз из SOo в газах в значительной степени является результатом каталитического воздействия отложений (главным образом соединений ванадия), с другой — наличие 80з приводит и к разъеданиям новерхно-стей нагрева и образованию сульфатов, способствующих нарастанию отлощеиия, а также к изменению свойств прилипшей золы. Поэтому ряд приемов, применяемых для борьбы с этими явлениями, одновременно направлен на снижение коррозии и загрязнений. По этой причине и рассматривать эти процессы приходится совместно.  [c.107]

Большое разнообразие и сложность соединений ванадия объясняются его спсюобностью 1) существовать в пяти валентных состояниях 2) проявлять свойства металла и неметалла 3) образовывать несколько радикалов и 4) входить в состав множества комплексных соединений, образовавшихся из ванадиевых поликислот (рис. I). На рис. 2 показана схема основных химических и металлургических процессов переработки ванадиевых руд с целью получения химических соединений, ферросплавов и лигатур ванадия, необходимых для промышленного применения.  [c.102]


Оксиды неметаллов. К данной группе примесей относятся В2О3 и Р20з- Подобно другим оксидам, относящимся к под-фуппе ЗА Периодической системы элементов, BjOj электрохимически разлагается, и бор растворяется в алюминии. В противоположность другим металлам бор оказывает положительное влияние на свойства некоторых алюминиевых сплавов и приводит к очистке металла от титана и ванадия. По этой причине борсодержащие соединения иногда специально вводят в электролит.  [c.156]

В работе Уманского [140] эти представления распространены на весь класс фаз внедрения. Имеет место аддитивность кристаллической структуры и физических свойств. Все металлы, образующие класс соединений, являются переходными, а неме таллы обладают близкими значениями потенциала ионизации 21,7-10 ( йс (13,54 эб) для водорода, 23-lQ- дж (14,47 эв) для азота, 18-10 дж (11,24 эв) для углерода. Тепловой эффект — экзотермический, причем он тем больше, чем менее заполнена с -подгруппа металлического атома. У карбидов и нитридов циркония и титана — элементов IV группы — эффект больше, чем у карбидов и нитридов тантала н ванадия — элементов V группы. Реакция образования карбидов молибдена и вольфрама МогС и W является эндотермической. При пропускании тока через-стальную проволоку при 1070 С скорость диффузии углерода в направлении тока (от анода к катоду) больше, что указывает на положительную ионизацию атомов углерода, подобно атому водорода в PdH.  [c.168]

Кислород может вызывать горячие трещины при сварке аустенитных сталей. Его действие на первичную структуру, как указывалось, связано с окислением ферритообразующих элементов (титана, алюминия, кремния, ванадия, хрома) и находится в противодействии измельчающему влиянию азота. Изменения структуры, обусловленные действием кислорода, приводят к снижению стойкости шва против трещин. Кислород, по-видимому, способен сегрегировать в межкристаллических прослойках и изменять их состав и свойства. Усиление вредного влияния серы, ниобия и других элементов при сварке под флюсами с высоким содержанием SiOj, возможно, связано с образованием соответствующих соединений с кислородом, снижающих температуру затвердевания межкристаллических прослоек. Опыты по введению в зону сварки ржавчины, окалины и газообразного кислорода свидетельствуют о его способности вызывать горячие трещины в швах.  [c.216]

К первой группе относятся Т, с, переходных металлов (титана, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, марганца, рения, металлов группы железа, платиноидов, редкоземельных и антиподных металлов) и щелочноземельных металлов. Все они обладают высокой тепло- и электропроводностью, имеют высокую твердость, высокие темп-ры плавления (до 3900°), слабые парамагнитные свойства. Коэфф. термич. расширения этих соединений ниже, чем у соответствующих металлов. Все металло-подобпые Т, с. обладают высокой стойкостью против действия кислот, агрессивных нагретых газов, расплавленных металлов и солей, Металлич. карбиды по мн. своим свойствам подобны металлам они имеют простую кристаллич, решетку, в большинстве случаев построенную по типу твердых растворов внедрения, вследствие  [c.365]

Титановые сплавы. Соединение титана с углеродом (до 20%) образует карбид титана, обладающего высокой температурой плавления (3140°) и твердостью, и поэтому широко применяемому в твердых сплавах. Соединения технического титана с железом, марганцем, хромом, молибденом, ванадием, оловом и другими легирующими компонентами образуют титановые сплавы, обладающие повышенными прочност ныьш свойствами и лучшей обрабатываемости резанием по сравнению с титаном Химический состав промышленных титановых сплавов приведен в табл. 51 а их свойства — в табл. 52.  [c.149]

В настоящее время серийно применяется довольно большое число титановых сплавов. Большой диапа.зон их структур и свойств обусловлен, в частности, полиморфизмом титана, хорошей растворимостью многих элементов (по крайпеп мере в одной из фаз), а также образованием химических соединений, обладающих переменной растворимостью в титане. В соответствии с приведенными выше диаграммами состояния все легирующие элементы по влиянию на полиморфизм титана можно разбить на три группы. Первая группа представлена а-стабилизаторами — элементами, повышающими стабильность а-фазы из металлов к числу а-стабилизаторов относится алюминий. Ко второй группе принадлежат -стабилизаторы — элементы, повышающие стабильность р-фазы эти элементы в свою очередь можно разбить на две подгруппы. В сплавах титана с элементами первой подгруппы при достаточно низкой тедшературе происходит эвтектоидный распад р-фазы к числу таких элементов относятся хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт. В сплавах титана с элементами второй подгруппы при достаточно высокой их концентрации Р-твердый растнор сохраняется до комнатной температуры, не претерпевая эвтектоидного распада. Такие элементы иногда называют изоморфными р-стабилизаторами. К ним пр1шадле-жат ванадий, молибден, ниобий, тантал. Третья группа прелстаклена нейтральными упрочнителями, т. е. легирующими элементами, мало  [c.402]

Основное назначение присадок сводится, таким образом, к образованию сухих отложений, препятствующих диффузии кислорода к поверхности металла и тем самым к снижению коррозии. Изменение свойств золовых отложений при этом достигается за счет повышения температуры плавления соединений, содержащихся в присадке и присутствующих в золовых отложениях ванадия. При наличии в присадке магния образуются тугоплавкие соединения типа MgзV208. Аналогичные соединения образуются при наличии в присадке магния и алюминия. При повышенных содержаниях в отложениях натрия снижение коррозии достигается путем ввода присадок на основе М — А1—51, где кремний по данным [137] играет роль разбавителя. Для присадок на основе Мд—А1—З наибольшая эффективность была получена в диапазоне отношений 1 3 4, т. е. при массовой доле кремния, равной сумме массовых долей магния и алюминия. Этому соотношению соответствует соединение типа 2Mg0 2Al20з 55102 с температурой плавления 1365—1465 °С.  [c.152]

В качестве активаторов опробовали галоидные соединения натрия, калия, кальция, бария и аммиака, из которых наиболее эффективным оказался фтористый натрий. Изменение содержания активатора в пределах 1—6% (по массе) и кремния в пределах 10—50% (объемн.) в смесях для диффузионного силицирования (инертным наполнителем служила окись алюминия со средним размером частиц 0,13 мм) существенно не влияло на толщину покрытий и их защитные свойства. Повышение температуры значительно увеличивало скорость роста покрытий. Два цикла силицирования продолжительностью 4 и 12 ч вместо одного 16-ч цикла при 1205° С обеспечивали получение более качественных покрытий. Чистые силицидные покрытия на тантале и его сплавах (без ванадия) были склонны к чуме при пониженных температурах (особенно заметно при 980° С) и не обладали способностью к самозалечиванию при высоких температурах (1370—1480° С). На сплаве с ванадием (Та — ЗОЫЬ—7,5У) силицидное покрытие отличалось более высокими защитными свойствами при обеих температурах циклического окисления (980 и 1480° С).  [c.315]

Режимы сваркп и механические свойства сварных соединений сплава ванадия с 12%  [c.373]


Смотреть страницы где упоминается термин Ванадий Соединения - Свойства : [c.262]    [c.41]    [c.4]    [c.86]    [c.358]    [c.380]    [c.289]    [c.38]    [c.109]    [c.504]    [c.632]    [c.182]    [c.814]    [c.9]    [c.119]    [c.333]    [c.25]    [c.54]    [c.364]    [c.267]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.358 ]



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит

Соединения Свойства



© 2025 Mash-xxl.info Реклама на сайте