Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Равновесие механических систе неустойчивое

Одно из направлений посвящено изучению устойчивости положений равновесия механических систем. При этом в зависимости от поставленной задачи применяются теорема Лагранжа, критерий Сильвестра положительной определенности квадратичной формы, теорема Четаева о неустойчивости положения равновесия исследуется устойчивость стационарных движений.  [c.60]

Равновесие термодинамических систем по аналогии с механическими может быть устойчивым (стабильным), неустойчивым (лабильным) и относительно устойчивым (метастабильным). Равновесное состояние называется устойчивым, если по устранении возмущения, вызвавшего некоторое отклонение системы от этого состояния, система сама по себе возвращается в первоначальное состояние равновесия.  [c.15]


Колебания около положения равновесия возникают в случае устойчивого равновесия. В случае неустойчивого равновесия система при малейшем отклонении удаляется от положения равновесия и колебания около этого положения не возникают. Поэтому при изучении малых колебаний механических систем важно знать критерий устойчивости равновесия этих систем.  [c.5]

Постановка задачи об устойчивости равновесия распределенных систем. Диссипативные системы образуют частный класс неконсервативных систем. Для этих систем каждое (или почти каждое) движение сопровождается уменьшением полной механической энергии. Ниже рассмотрим такие системы с не зависящими от времени параметрами, в которых возможно возрастание полной механической энергии за счет ее притока извне. Равновесие таких систем и (х, () = О при определенных значениях параметров может стать неустойчивым. В связи с этим возникает задача  [c.241]

Основное практическое применение в анализе устойчивости конструкций находит концепция устойчивости механических систем, восходящая к Эйлеру. С состоянием устойчивости системы связывается возможность существования для нее при заданном Р только одной формы равновесия напротив, в состоянии неустойчивости в тех же условиях система характеризуется наличием нескольких, так называемых смежных форм равновесия, соответствующих бесконечно близким значениям функционала П. Иными словами, для состояния неустойчивости нагруженной системы характерно ветвление или бифуркация форм равновесия. Очевидно, что в рамках концепции Эйлера задача анализа всевозможных равновесных состояний системы на устойчивость эквивалентна задаче определения точек бифуркации системы в пространстве параметров, определяющих ее состояния (нагрузки, частоты возбуждающих колебаний и т. п.).  [c.108]

Простейшее представление об устойчивости и неустойчивости механических систем дает известный пример с тяжелым шариком на сферической поверхности или на плоскости — в зависимости от характера изменения потенциальной энергии шарика здесь различают случай устойчивого, неустойчивого или безразличного равновесия.  [c.363]

Так, например, на рис. 223, а и (5 изображен физический маятник в состоянии равновесия, но в положении, изображенном на рис. 223, а, потенциальная энергия маятника минимальна и равновесие устойчиво, а на рнс. 223, б потенциальная энергия максимальна и равновесие неустойчиво. Такой маятник является механической системой с одной степенью свободы. Колебания систем со многими степенями свободы складываются из простых колебаний около положения устойчивого равновесия. Указанный Лагранжем метод изучения колебаний (см. 62) имеет громадное применение в различных отраслях науки н техники и, в частности, в теории вибрации машин.  [c.401]


Пусть система (например, какой-либо газ) не находится в термодинамическом равновесии с окружающей средой. В некоторый момент времени полностью изолируем систему от внешней среды. Как известно, под действием внутренних процессов такая система через тот или иной промежуток времени неизбежно придет в состояние равновесия — произойдет затухание механических движений, выравнивание температур, плотностей и т. щ Все процессы, приводящие систему в равновесное состояние, являются необратимыми, и тем самым протекание их обусловливает увеличение энтропии системы. Следовательно, переход системы из неравновесного, а значит в термодинамическом смысле неустойчивого, состояния в равновесное устойчивое состояние сопровождается ростом энтропии. Таким образом, в состоянии устойчивого равновесия энтропия системы имеет наибольшее значение.  [c.122]

Но интуиция может дать верный ответ только в простейших случаях для более сложных систем одной интуиции оказывается недостаточно. Например, даже для сравнительно простой механической системы, изображенной на рис. 1.7, а, интуиция может лишь подсказать, что положение равновесия шарика на вершине при очень малой жесткости пружины будет неустойчивым, а с увеличением жесткости пружины оно должно стать устойчивым. Для изображенной на рис. 2.3, б системы стержней, соединенных шарнирами, на основе интуиции можно только сказать, что исходное положение равновесия этой системы устойчиво или неустойчиво в зависимости от соотношения между силой, жесткостью пружины и длиной стержней.  [c.11]

Состояние равновесия, которое сохраняется, несмотря на возмущения, является стабильным состоянием или состоянием устойчивого равновесия. Состояние равновесия, которое не сохраняется после бесконечно малых возмущений, является состоянием неустойчивого равновесия. Впоследствии будут определены другие виды равновесия, но из всех видов устойчивое равновесие наиболее важно. Постараемся найти критерий равновесия, посредством которого может быть установлено состояние устойчивого равновесия. Вначале мы рассмотрим простую механическую неупругую систему, свободную от влияния электричества 216  [c.216]

Параметры механической системы практически никогда не бывают точно известными, а иногда могут случайным образом меняться с течением времени. Если общие свойства системы мало изменяются при малом изменении параметров и эги изменения носят лишь количественный характер, то такую систему называют структурно устойчивой (по терминологии, введенной А. А. Андроновым и Л. С. Понтрягиным, грубой). Если малое изменение какого-либо параметра приводит к качественному изменению характера состояния системы, то ее называют структурно неустойчивой (негрубой). Таким изменениям соответствуют принципиальные изменения (бифуркация) структуры фазового пространства — появление новых положений равновесия (особых точек), предельных циклов и т. д. Значение параметра р = называют бифуркационным, если существуют сколь угодно близкие к нему значения параметра, при которых структура фазового пространства качественно отличается от структуры при р = Ро.  [c.33]

Кроме того, что движение шарика происходит вдоль заданной окружности (а это уменьшает диапазон допустимых состояний), имеется лишь одно важное различие между этим и предыдущим случаями теперь маятник может покоиться в двух различных положениях, обозначенных на рис. 2.2 цифрами 1 и 2, Оба они являются некоторыми равновесными положениями, однако лишь положение 1 соответствует механическому состоянию устойчивого равновесия. Положение 2 соответствует состоянию неустойчивого равновесия, поскольку даже простого прикосновения достаточно для того, чтобы сместить его хотя бы на бесконечно малую величину в неустойчивое положение, из которого маятник сам по себе переходит в положение 1 без какого-либо взаимодействия с окружающей средой. Следовательно, как и ранее, мы видим, что при условии неизменности связей, наложенных на систему, имеется одно и только одно устойчивое состояние, в которое система переходит из любого начального состояния после устранения всех взаимодействий с внешней средой.  [c.30]


Позже (1960) Четаев подчеркивал, что в строгой установившейся теории реальные возмущающие силы не должны делать неустойчивыми хорошо наблюдаемые невозмущенные устойчивые равновесия или движения механической системы. В частности, Четаев пришел к заключению, что малые диссипативные силы с полной диссипацией, всегда реально существующие в нашей природе, являются гарантийным силовым барьером, делающим пренебрежимыми влияния нелинейных возмущающих сил на движения консервативных систем.  [c.15]

Различают устойчивые и неустойчивые еостояния равновесия механических систем. В принципе для решения вопроса об устойчивости состояния равновесия нужно исследовать результаты возможного нарушения этого состояния, т. е., иными словами, изучить общие евойства движения, которое возникает вследствие сколь угодно малых начальных возмущений состояния равновесия такое движение называетея возмущенным. Если, совершая возмущенное движение, система удаляется от состояния равновесия (монотонный уход или колебания с возрастающими пиковыми значениями), то такое состояние следует считать неустойчивым. Если же в возмущенном движении система остается в непосредственной близости к равновесному состоянию (например, еоверщает гармонические колебания) или, тем более, постепенно приближается в этому состоянию (монотонное приближение, или колебания с убывающими пиковыми значениями), то такое состояние устойчиво.  [c.152]

Пример 7. Частный случай обращения теоремы Лагранжа-Дирихле об устойчивости положения равновесия механических систем и теорема Ирншоу о неустойчивости равновесия точечного заряда в электростатическом поле.  [c.96]

Несомненно, одним из самых ярких фактов, рассмотренных в настоящей главе на примере маятников, является вибрационюя стабилизация положений равновесия механических систем, которые при отсутствии вибрации являются неустойчивыми. С другой стороны, как обмечалось,  [c.117]

МЕХАНИЧЕСКОЕ РАВНОВЕСИЕ— состояние покоя или прямолинейноравномерного движения системы материальных точек (тела, звена, механизма). М. может 1ть устойчивым, неустойчивым и безразличным. При устойчивом равновесии достаточно малые отклонения системы (тела) от положения равновесия вызывают силы, стремящиеся вернуть ее в состояние равновесия. Условием устойчивого равновесия для консервативной системы (где механическая энергйя не превращается в тепловую) является минимум потенциальной энергии данной системы (теорема Лагранжа—Дирихле). Если на систему с идеальными связями действуют только силы тяжести, то устойчивым будет положение, при котором центр тяжести занимает самое низкое положение (принциТП Торичелли).  [c.178]

До сих пор мы рассмотрели ряд типичных явлений, пренебрегая шумами, т. е. влиянием флуктуаций на систему. Однако в последние годы стало ясно, что именно в критических точках, т. е. там, где система изменяет свое макроскопическое изменение, флуктуации играют решающую роль. Фундаментальные законы теоретической физики позволяют утверждать, что там, где происходит диссипация, должны быть и флуктуации. Следовательно, при рассмотрении физических, химических, биологических, механических или электрических систем пренебрегать флуктуациями не следует, по крайней мере если речь идет о системах, достаточно близких к критическим точкам. Для фазовых переходов систем, находящихся в состоянии термодинадшческого равновесия, адекватный учет флуктуаций был давно стоявшей проблемой, разрешить которую удалось лишь недавно методом ренормгруппы. В этой книге нас интересуют неустойчивости физических и химических систем, находящихся далеко от состояния термодинамического равновесия, и некоторых других систем. В этом круге явлений флуктуации играют не менее важную роль и описание их требует новых подходов. Например, принцип подчинения, с которым мы познакодш-лись в разд. 1.13, по-видимому, позволяет учесть флуктуации (см. гл. 7), и уравнения для параметров порядка следует решать при адекватном включении флуктуаций (гл. 10). Не вдаваясь в подробности, можно сказать, что флуктуации превращают явления и проблемы бифуркаций (достаточно трудные сами по себе) в еще более сложные явления и соответственно еще более трудные проблемы неравновесных фазовых переходов.  [c.73]


Смотреть страницы где упоминается термин Равновесие механических систе неустойчивое : [c.361]    [c.398]   
Курс теоретической механики (2006) -- [ c.642 ]



ПОИСК



Неустойчивость

Неустойчивость равновесия

Ра неустойчивое

Равновесие механических систе

Равновесие механическое

Равновесие механическое неустойчивое

Равновесие неустойчивое



© 2025 Mash-xxl.info Реклама на сайте