Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кирхгофа длина

Теперь МОЖНО вычислить точные координаты точек 0 используя то, что в соответствии с гипотезой Кирхгофа длина о О . остается равной z, а углы р о О и q o O остаются прямыми.  [c.216]

Закон Кирхгофа остается справедливым и для монохроматического излучения. Отношение интенсивности излучения тела при определенной длине волны к его поглощательной способности при той же длине волны для всех тел одно и то же, если они находятся, при одинаковых температурах, и численно равно интенсивности излучения абсолютно черного тела при той же длине волны и температуре, т. е. является функцией только длины волны и температуры  [c.466]


Кирхгофу принадлежит заслуга детального термодинамического исследования вопроса о связи между испускательной и поглощательной способностью. Теорема Кирхгофа утверждает, что отношение испускательной способности тела к его поглощательной способности зависит от температуры тела, но не от его природы. В противном случае равновесное излучение не могло бы существовать в полости, где есть тела различной природы. Другими словами, отношение oJa) одинаково для всех тел, т.е. является универсальной функцией длины волны (или частоты) и температуры  [c.404]

Это соотношение показывает, что все черные тела имеют одно и то же распределение энергии излучения по спектру, а их энергетическая светимость одинаково изменяется с температурой. Следовательно, открывается возможность экспериментальной проверки следствий закона Кирхгофа и опытного определения вида универсальной функции f X,T). Для этого необходимо создать тепловой излучатель, поглощающий все падающие на него лучи, и исследовать его испускательную способность как функцию длины волны и температуры. Экспериментальное решение такой задачи базируется на использовании очень простой модели черного тела.  [c.405]

Кирхгофа не принимается во внимание влияние вещества экрана на световое поле вблизи него, что, как мы уже упоминали, не соответствует действительности, хотя и ведет лишь к незначительным ошибкам в тех случаях, когда размеры отверстий велики по сравнению с длиной волны. Однако, несмотря на это ограничение, метод Френеля—Кирхгофа имеет огромное значение для большого круга задач, являясь практическим путем их решения.  [c.171]

При разборе задачи о дифракции на щели мы допускали, что по всей ширине щели амплитуда и фаза вторичных волн одинаковы. Другими словами, мы пренебрегали искажающим влиянием краев щели, что допустимо, если ширина щели Ь значительно больше длины волны Ь X). Таким образом, мы оставались в области применимости принципа Френеля — Кирхгофа, и наше решение имеет силу именно при этих условиях. Однако на практике нередко приходится иметь дело с дифракцией на щелях, ширина которых сравнима с длиной волны. В частности, современные дифракционные решетки (см. 45) представляют совокупность щелей шириной в 1—2 мкм, т. е. сравнимых с длиной волны. Возникает вопрос, в какой мере метод Френеля—Кирхгофа пригоден в этих случаях Для предельного случая ширины щели, малой по сравнению с длиной волны (6 X), удалось дать строгое решение задачи, не поль-  [c.178]


Необходимо, однако, отметить, что согласно закону Кирхгофа тело, сильнее поглощающее, должно и больше испускать только при условии, что сравнение производится при одинаковой температуре. Это условие соблюдено в описанном выше опыте с расписанным фарфором, отдельные части которого нагреты до одной температуры то же имеет место и в ряде других аналогичных опытов при накаливании платиновой пластинки, до половины покрытой платиновой чернью, черные части светятся гораздо ярче капля фосфорнокислого натрия на платиновой проволочке остается те м-иой, хотя проволочка ярко раскалена, ибо капля даже при высокой температуре остается прозрачной для видимых лучей, и т. д. Поэтому лишь кажущимся парадоксом является известный опыт, в котором в водородное пламя вводятся рядом куски извести и угля и известь оказывается гораздо более ярко раскаленной, чем уголь. Конечно, поглощательная, а следовательно, и испускательная способность угля гораздо больше, чем у извести для всех длин волн, и поэтому при равной температуре уголь будет светиться во всем спектральном интервале ярче, чем известь. Но в описанных условиях опыта температура угля оказывается гораздо ниже температуры извести. Причина лежит отчасти в химических процессах, сопровождающихся поглощением тепла, отчасти в том, что уголь именно в силу своей большой испускательной способности излучает много энергии во всем спектре, в том числе очень много и в инфракрасной области. Этот огромный непрерывный расход энергии и приводит к тому, что температура, до которой раскаляется уголь, оказывается значительно ниже, чем температура самого пламени или извести, не несущей таких больших потерь энергии, ибо ее испускательная способность селективна и, в частности, в инфракрасной части очень мала.  [c.691]

Поглощающая способность хорошо выполненного черного тела описанного устройства практически не отличается от единицы для любой длины волны. Согласно закону Кирхгофа и испускательная ее способность очень близка к ev,г, где Т означает температуру стенок полости.  [c.693]

Одним из пионеров ее исследования был выдающийся немецкий физик Г. Кирхгоф. В 1859 г. он показал, что отношение испускательной способности тел (А,7) к их поглощательной способности А Х,Т) является функцией длины волны излучения А и температуры Т и одинаково для всех тел  [c.150]

При измерении температуры методом обращения следует вводить некоторые поправки. Одна из них связана с тем, что ленточная лампа обычно градуируется по оптическому пирометру в красном свете (1 = 665 нм), а наблюдаемые линии имеют другую длину волны. Для пересчета яркостной температуры, измеренной при 1 = 665 нм, к яркостной температуре при другой длине волны необходимо воспользоваться соотношением, легко получаемым из формулы Вина (5.26) и закона Кирхгофа.  [c.259]

Закон Кирхгофа справедлив и для монохроматического излучения. Если поглош,ательную способность монохроматического излучения обозначить через А , то для определенной длины волны  [c.255]

На основании общих термодинамических представлений Кирхгоф показал (1895), что е = а независимо от температуры тела, причем зто равенство справедливо для каждой длины волны в отдельности. Это означает, что коэффициент излучения черного тела равен единице (е = 1), т. е. черное тело является наиболее эффективным излучателем тепловой радиации. Соотношение (11.1) при е= I для черного тела было теоретически получено Больцманом (1884) н поэтому называется законом Стефана-Больцмана, а ст - постоянной Стефана-Больцмана. Закон Стефана-Больцмана показывает, что мощность излучения поверхности черного тела зависит только от температуры и не зависит от физических свойств поверхности.  [c.69]

Для спектрального излучения закон Кирхгофа формулируется следующим образом отношение излучательной способности при определенной длине волны к поглощательной способности при той же длине волны для  [c.409]

При выводе закона Кирхгофа рассматривалось серое излучение. Вывод останется справедливым и в том случае, если тепловое излучение обоих тел рассматривается только в некоторой части спектра, но, однако, имеет одинаковый характер, т. е. оба тела испускают лучи, длины волн которых лежат в одной и той же произвольной спектральной области. В предельном случае приходим к случаю монохроматического излучения.  [c.392]


В соответствии с законом Кирхгофа для всех тел, независимо от их физических свойств, отношение плотности потока собственного излучения к его поглощательной способности при одинаковых температурах и длине волны излучения является величиной постоянной и равной плотности потока излучения абсолютно черного тела. Из уравнений (46) и (52) коэффициент теплового излучения топки  [c.180]

Это соотношение, известное как закон Кирхгофа, основано на предположении, что для АЧТ коэффициент поглощения равен единице для всех длин волн и температур —а (Х] ") = 1. Универсальная функция спектрального распределения излучения АЧТ описывается законом Планка  [c.118]

В уравнении (5-5) закон Кирхгофа приведен для интегрального излучения. Но он может быть применен и для монохроматического излучения. В этом случае он формулируется так отношение излучательной способности определенной длины волны к поглощательной способности при той же длине волны для всех тел одно и то же и является функцией только длины волны и температуры, т. е.  [c.157]

Все точки Si плоскости MN, лежащие вне дефекта, рассматривают как вторичные источники излучения и определяют суммарный сигнал от них на приемнике. Акустическое давление позади дефекта считают равным нулю. Такое предположение о распределении поля в плоскости MN, соответствующее приближению Кирхгофа, достаточно точно, когда размеры дефекта значительно больше длины волны.  [c.114]

Кирхгоф сочетал в себе математический талант с умением наблюдать и экспериментировать. Опыты его были точными и изящными, часто производились с приборами собственного изобретения. Он организовал практический семинар, целью которого было облегчить для слушателей переход от прочитанных курсов к самостоятельной работе. В этом семинаре участники его знакомились с классическими методами физических измерений. Результаты всех работающих сравнивались между собой и с результатами, уже принятыми в науке. Темами для работ служили, например, измерения длины волны света, теплоты, выделяющейся при растворении соли и др. Каждый слушатель в начале года выбирал определенный день в неделю, когда он работал в физическом кабинете над избранной темой и задачей.  [c.390]

Согласно закону Кирхгофа точно такое же количество энергии в указанной области спектра будет излучать сферический поглощающий объем на элемент поверхности оболочки dFi. Полное сферическое излучение рассматриваемого элементарного объема поглощающей среды в заданном интервале длин волн будет при этом  [c.164]

Если истинная температура пламени Т, то спектральная калорическая яркость излучения при длинах волн р и может быть записана на основании законов Кирхгофа и Вина в виде  [c.226]

Эта формула выражает закон Кирхгофа количество испускаемого телом при некоторой температуре монохроматического теплового излучения равно произведению (относящихся к той же температуре и той же длине волны) коэффициента поглощения этого тела и количества испускаемого абсолютно черным телом излучения.  [c.192]

Рассмотрим с помощью закона Кирхгофа два крайних случая Лд = 0 и = Если Лх = 0, т. е. тело не поглощает излучения данной длины волны, то оно и не способно испускать соответствующего излучения S = 0. Поэтому, например, красное стекло, не поглощая красных лучей, не может оставаться красным при нагреве до состояния свечения оно дает зеленый цвет. По такой же причине идеальный монохроматический фильтр не может быть источником того излучения, которое он сквозь себя свободно про-  [c.192]

Согласно закону Кирхгофа, степень черноты абсолютно серых тел, как и коэффициент поглощения, не зависит от длины волны  [c.195]

Рассмотрим первый случай, когда поглощающая газовая струя имеет постоянный для всех длин волн спектральный коэффициент ослабления К- =К. При этих условиях, как отмечалось ранее, газовая среда характеризуется также и постоянной спектральной поглощательной способностью a i=ai. В соответствии с законом Кирхгофа имеем  [c.283]

Лучеиспускательная способность абсолютно черного тела есть функция температуры и длины волны = f (Т, к). Заметим между прочим, что Кирхгофу не удалось раскрыть вида этой функции.  [c.130]

Р. в. на шероховатых и неоднородных поверхностях раздела сред приводит к тому, что волна не только отражается в зеркальном направлении, но и рассеивается в др. направлениях. Если шероховатая поверхность движется, то спектр рассеянной волны отличен от спектра падающей волны. Такие характеристики, как интенсивность и поляризация рассеянных волн, индикатриса, рассеяния, существенно зависят от соотношения между длиной волны, масштабом и высотой шероховатостей. Осн. методами для расчёта поля рассеяния на шероховатых поверхностях являются метод возмущений и Кирхгофа метод. Метод возмущений справедлив, когда  [c.267]

Для деформирования тонких оболочек предполагается справедливой кинематическая гипотеза Кирхгофа—Лява, согласно которой [8, 17, 34, 55] — прямолинейные элементы оболочки, нормальные до деформации к срединной поверхности, остаются прямолинейными, нормальными к деформированной срединной поверхности и сохраняют свою длину. С использованием выражений (4.45) эту гипотезу можно записать  [c.133]

Закон Кирхгофа. Для всякого тела излучательная и поглощательная способности зависят от VeMnepaTypbi и длины волны. Различные тела имеют различные значения Е и А. Зависимость между ними устанавливается законом Кирхгофа. Рассмотрим лучистый теплообмен между двумя параллельными пластинами с неодинаковыми температурами, причем первая пластина является абсолютно черной с температурой Т,, вторая — серой с температурой Т. Расстояние между пластинами значительно меньше их размеров, так что излучение каждой из них обязательно попадает на другую.  [c.464]


Приведем вывод условия (2.231), принадлежащий Кирхгофу. Для этого рассмотрим участок границы пластинки длины ds, (рис. 2.7), ограниченный отрезками AAi, BBi прямых, перпендикулярных срединной поверхности. Элемент AAiB B границы  [c.83]

Согласно основному соотношению Кирхгофа v.г = 8v,7 л 7 Следовательно, для нечерных тел Е ,т <Се. ,т, ибо. 4v.rдлины волны испускательная способность нечерного тела не может быть больше испускательной способности черного тела при одинаковой температуре. Сам вид функции Е ,т может отличаться от функции ev,г вследствие того, что поглощательная способность y4v,7 зависит от V, т. е. обладает избирательным (селективным) ходом.  [c.693]

Связь между нспускательной Е г и поглощательной Лу, т способностями тела была дана Кирхгофом. Закон Кирхгофа гласит отношение испускательиой и поглощательной способностей не зависит от природы тела. Это означает, что отношение т/Лу, т является одинаковым для всех тел, т. е. одной и той же (универсальной) функцией частоты (длины волны) и температуры, хотя у, т и Лу т, взятые отдельно, могут сильно измениться при переходе от одного тела к другому.  [c.133]

Для нахождения интенсивности излучения пламени /пл при данной длине волны X используется закон Кирхгофа, согласно которому отношение излучательной способности нечерного тела к его поглощательной способности равно излучательной способности абсолютно черного тела при той же длине волны и температуре. Считая, что интенсивность излучения /дл выражает излучательную способность пламени, получаем  [c.254]

Для пояснения закона Кирхгофа на рис. 32.5 схематически показаны два графика один под другим верхний график дает распределение спектральной излучательностп в функции длины волны (спектр излучения), а на нижнем графике даны соответствующие кривые коэффициента поглощения (спектр поглощения).  [c.392]

Составим уравнение по второму правилу Кирхгофа [32] для за.чкнутого контура, образованного участком цепи длиной dx, обойдя его по часовой стрелке  [c.159]

ЗАКОН [Джоуля — Ленца плотность тепловой мощности тока в проводнике равна произведению квадрата плотности тока на удельное сопротивление проводника Дюлонга и ГТти молярная теплоемкость простых химических веществ при постоянном объеме и температуре, близкой к 300 К, равна универсальной газовой постоянной, умноженной на три Кеплера (второй секториальная скорость точки постоянна первый планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце третий отношение кубов больших полуосей орбит к квадратам времен обращения для всех планет солнечной системы одинаково > Кирхгофа для теплового излучения для произвольных частоты и температуры отношение лучеиспускательной способности любого непрозрачного тела к его поглощательной способности одинаково Кнудсена для течения разряженного газа по цилиндрическому капилляру радиуса г и длины / характеризуется формулой  [c.233]

В теории жёстких П, используется, как правило, гипотеза прямых нормалей (гипотеза Кирхгофа — Лява), по к-рон любая прямая, нормальная к срединной плоскости до деформации, остаётся и после деформации прямой, нормальной к срединной поверхности. При этом длина волокна вдоль толщины остаётся неизменной. Однако в ряде случаев гипотеза недеформируемых прямых нормалей является неприемлемой. Это относится, напр., к трёхслойным и многослойным П., а также к П., изготовленным из композиц. материалов, когда нек-рые слои получают значит, деформации поперечного сдвига. Одну из моделей деформации П. с учётом поперечного сдвига называют, в отличие от модели Кирхгофа — Лява, моделью Тимошенко,  [c.626]

Закон Кирхгофа отношение испускатель-ной способности тела к его поглощательной способности не зависит от материала тела и равняется нспускательной способноети абсолютно черного тела при данных длине волны и температуре  [c.227]

Законы радиации, представляющие основу оптической пирометрии, применимы только в условиях, известных как услю-вия абсолютно черного тела. Абсолютно черным называется тело, коэффициент поглощения которого а. равен единице для всех значений длины волны т. е. когда излучение л юбой длины волны этим телом полностью поглощается. Представление об абсолютно черном теле было введено Кирхгофом, который показал, что излучение, испускаемое маленьким отверстием в поверхности, ограничивающей однородно нагретое замкнутое пространство, приближается к условиям излучения истинно черного тела.  [c.112]


Смотреть страницы где упоминается термин Кирхгофа длина : [c.18]    [c.336]    [c.412]    [c.179]    [c.153]    [c.392]    [c.193]    [c.298]    [c.369]    [c.245]    [c.589]    [c.267]   
Основы оптики (2006) -- [ c.281 ]



ПОИСК



Кирхгофа



© 2025 Mash-xxl.info Реклама на сайте