Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Облака

В [169] для топочных устройств предложена модель разреженного облака абсолютно черных частиц. В расчете были использованы представления о вероятности взаимного затенения частиц. При условии малости концентрации частиц в облаке была получена простая формула для поглощательной способности этой разновидности дисперсной среды  [c.146]

У переходных металлов, расположенных в больших периодах, осуществляется достройка внутренних оболочек. Идентичность свойств и существование лантаноидов и актиноидов определяется застройкой п—2 (снаружи) оболочек при сохранении идентичных п—1 и п оболочек. Форма электронных облаков зависит от занимаемой электронами орбиты. Так, например, s-электроны, вращающиеся по круговым орбитам, образуют электронные облака в форме сферического слоя с максимальной плотностью на расстоянии от центра атома, убывающей с увеличением или с уменьшением величины /7-электроны, вращающиеся по эллиптическим орбитам, образуют электронные облака в форме прямоугольно расположенных гантелей , так что при заполнении р-оболочки шестью попарно связанными электронами возникают три перпендикулярно расположенные по осям координат гантели . Форма электронных облаков , создаваемых внешними электронами, обусловливает кристаллическую структуру элементов.  [c.8]


Основные вопросы, связанные с протеканием ряда физических и химических процессов в облаке перемещающихся мелкодисперсных капель или твердых частиц, рассмотрены в работе [253]. В такой системе жидкое рабочее вещество (раствор, шлам или коллоидальная суспензия) разбрызгивается в верхней части нагревательной ко.лонки. Затем оно последовательно проходит зоны испарения, высушивания и химической реакции в виде облака частиц, переносимого образовавшимся паром. Если рабочее вещество представляет собой твердые частицы, стадии испарения и высушивания отсутствуют. Возможные реакции можно подразделить на окислительные, восстановительные и пиролитические [476]. Целый ряд химических процессов исследовался в реакторах диаметрами 102, 204 и 305 мм и высотой 4,58 м. Это были  [c.200]

Обзор работ по столкновению частиц и столкновению струй дан в работе [623]. Более подробный обзор литературы по инерционному осаждению и фильтрации выполнен в работе [243]. В связи с требованиями противообледенительной системы изучалось образование переохлажденных облаков на поверхности крыла самолета [82]. Процесс осаждения водяных капель при обтекании сверхзвуковым потоком двумерного клина, включая прохождение частиц через ударную волну, исследован в работах [696, 827]. Численный расчет процесса накопления водяных капель на поверхности лопаток компрессоров газовых турбин выполнен в работе  [c.211]

ЧТО вокруг пузырей в псевдоожиженных слоях, образованных частицами и газом, формируется облако частиц. Пузырь в таком слое представляет собой почти сферическую полость, поднимающуюся вместе с сопутствующими частицами, как если бы это было твердое тело, движущееся через жидкость вследствие градиента давления в слое и проницаемости пузыря снизу вверх через пузырь непрерывно течет газ. При высокой скорости газа газ образует короткозамкнутые токи вследствие большой проницаемости. При низкой скорости газ циркулирует через пузырь из-за сопротивления частиц, движущихся вокруг пузыря, причем газ, вытекающий сверху, снова увлекается вниз.  [c.415]

Видно, что твердая частица окружена электронным облаком уменьшающейся плотности, ограниченным распределенным потенциалом. Такая система ионизуется, когда часть электронного облака рассеивается (теоретически движется в бесконечность). Этого можно достичь, если приложить внешнее электрическое  [c.449]

Поскольку в металле существует как бы облако обобщенных электронов, металлическая связь допускает большее смещение атомов, чем другие типы связей. Этим обусловливается высокая пластичность металлических кристаллов по сравнению с валентными или ионными кристаллами.  [c.10]


Электрон, который близко подходит к атому, отталкивается электронным облаком, но нарушает, в свою очередь, расположение облака. Окончательный результат зависит от скорости электрона (его энергии и направления движения). Медленный электрон легко отражается, а атомное электронное облако претерпевает лишь незначительное возмущение это так называемое упругое соударение. Классически его можно представить как столкновение двух идеально упругих шаров, обменивающихся кинетической энергией. Изменения потенциальной энергии атома здесь не происходит.  [c.43]

Рассмотрим случай ковалентной связи. Вокруг ядер по своим орбитам вращаются электроны, образуя электронное облако. Обозначим один атом через А, а второй через Б. Электроны в свою очередь делятся на две группы  [c.43]

В качестве последнего примера рассмотрим движение излучающей материальной частицы, либо испаряющейся во время движения жидкой капли, либо, наконец, ракеты (рис. 111.20). Благодаря горению топлива внутри ракеты развиваются большие давления, и продукты горения вылетают из сопла наружу. Ракету можно было бы рассматривать как сис- Ж ш тему постоянного состава, но тогда наряду с самой ракетой нужно было бы все время рассматривать и вытекшее ранее облако газа. К системе  [c.109]

В остальных случаях найденные формулы дают возможность сделать приближенные оценки состояния системы. Например, пусть газопылевое протопланетное облако в начальный момент обладало энергией к. Отвлечемся от всех сил взаимодействия частиц, кроме гравитации. Потенциальная энергия такой системы будет однородной функцией степени 3 = — 1. Будем считать протопланетное облако сплошным однородным шаром массы М. Воспользовавшись решением задачи 5 1.1, получим  [c.397]

Самостоятельный электрический разряд представляют собой и молнии, наблюдаемые во время грозы. Сила тока в канале молнии достигает 10 ООО—20 ООО А, длительность импульса тока составляет несколько десятков микросекунд. Самостоятельный электрический разряд между грозовым облаком и Землей после нескольких ударов молнии сам собою прекращается, так как большая часть избыточных электрических зарядов в грозовом облаке нейтрализуется электрическим током, протекающим по плазменному каналу молнии (рис. j66).  [c.170]

Ускорение Земли. Предположим, что вся Земля покрыта слоем непрозрачных облаков. Опишите опыт, на основании которого можно было бы однозначно определить (имея в виду, что ускоренное движение может быть как вращательным, так и поступательным), является ли Земля инерциальной системой отсчета.  [c.101]

Облако газа или звезд может сплющиваться в направлении, параллельном оси полного момента импульса, без изменения значения импульса. Сжатие вызывается гравитационным притяжением энергия, приобретаемая при сжатии, должна каким-то  [c.199]

Таким образом, несмотря на обилие разнообразных элементарных частиц, только некоторые из них играют очевидную роль в строении нормального вещества. Нейтроны и протоны вступают в связь между собой с образованием заряженных ядер. Вокруг ядра движется электронное облако, и все это вместе составляет атом. Атомы соединяются в молекулы. Большие совокупности молекул образуют макроскопические тела газы, жидкости, кристаллы... Ускоряемые электроны излучают или поглощают фотоны. Средством исследования переходов между стационарными атомными состояниями является спектроскопия,  [c.425]

В настоящее время твердо установлено, что атом любого химического элемента состоит из положительно заряженного тяжелого ядра, расположенного в его небольшой центральной области, и более легкой электронной оболочки-облака. Электроны оболочки обращаются вокруг ядра и удерживаются вблизи его электрическими силами. Однако при таком криволинейном движении в атоме  [c.5]

Таким образом, вокруг ядра нуклона (вокруг голого нуклона) возникает облако (атмосфера) из я-мезонов. Кроме тс-мезонов, нуклоны взаимодействуют также с /С-мезонами и гиперонами, хотя величина этого взаимодействия меньше. Основным виртуальным процессом для этого взаимодействия является виртуальное испускание (поглощение) К-мезона с образованием гиперона Y в соответствии с законом сохранения странности, т. е. процесс N Y + + К- Виртуальные К-мезоны вокруг образовавшегося гиперона  [c.367]


Если освещение объекта наблюдения происходит не за счет прямого солнечного света, а за счет света, рассеянного на окружающих предметах или на облаках, то отдельные точки этих предметов можно считать источниками некогерентных волн (так как область когерентности для них имеет размеры 0,06 мм) и использовать модель некогерентного протяженного источника и в данном случае. При всестороннем освещении объекта следует считать 6 I 1, и для размеров области когерентности имеем 2/ког лг Я.  [c.107]

В астрофизике нередко пользуются также принципом Допплера для оценки скорости извержения водородных масс, наблюдаемых на Солнце (протуберанцы). Измерение наблюдаемых изменений частоты водородных линий дает для скорости водородного облака значения свыше 100 км/с (и даже до 1000 км/с).  [c.438]

Вследствие значительных скоростей вращения электронов по этим орбитам и отклонений размеров орбит статистическое распределение электронной плотности изображается электронным облаком , имеющим ббльщую плотность там, где наиболее вероятно нахождение электрона.  [c.7]

Все элементы имеют внешние валентные оболочки с числом электронов, равным номеру группы (от 1 для щелочных металлов и до 8 у инертных газов) У щелочных и щелочноземельных металлов (I и II основные группы) внешними являются один или два -электрона, вращающиеся по круговым орбитам и обра-вующие электронные облака в форме сферического слоя. У всех элементов, начиная с III группы, р-оболочки достраиваются из шести электронов, вращающихся по эллиптическим орбитам и образующих электронные облака в форме трех перпендикулярных гантелей или шести эллипсоидов со взаимно-прямоугольными большими осями У всех элементов, начиная с III группы, достраиваются внутренние d- и /-электронные оболочки  [c.10]

Многие элементы с неполностью заостренными внутренними электронными й- и /-подоболочйами обладают типичными металлическими структурами типа К8, К12 или Г12. Наличие решетки типа К8 у этих элементов объясняется тем, что после отделения всех валентных электронов внешней у ионов оказывается р -подоболочка с шестью электронами, образующими взаимодействующие эллиптические электронные облака . Решетка типа К12 является плотнейшей упаковкой. Для этой решетки удвоенное расстояние между двумя наиболее плот-ноупакованными октаэдрическими плоскостями, деленное на кратчайшее расстояние между соседними атомами в этой же плоскости <1, тождественно отношению параметров идеальной решетки типа Г12 при с/а= 1,6333. Несферичные ионы не дают плотнейшей решетки типа К12, хотя образуют плотнейшую решетку типа Г12.  [c.11]

Движение дислокаций задерживается у точечных и линейных дефектов атомно-кристаллических решеток, включений примесных атомов, облаков примесей (атмосферы Котрелла), у границ фаз, кристаллических блоков и зерен. Перемещение дислокаций тормозят поперечные дислокации и дислокации одинакового направления, но противоположного знака. Разноименные дислокации, столкнувшись одна с другой, взаимно погашаются.  [c.172]

Повышение усталостной прочности при кратковременных перегрузках объясняется деформационным упрочнением, происходящим, при пластических деформациях микрообъемов материала, сходным с ущючнением, при наклепе. Установлено, что под действием пластических деформаций происходят упрочняющие Процессы разупорядочение кристаллических решеток увеличение плотности дислокаций измельчение кристаллических блоков и увеличение степени их разориентировки зубчатая деформация поверхностей спайности в результате выхода пластических сдвигов на поверхность зерна и, как следствие, увеличение связи между зернами. Уменьшается растворимость С, О п N в а-железе эти элементы выпадают из твердых растворов, образуя высокодисперсные карбиды, QK a№ .iL нитриды в виде Облаков, блокирующих распространение дислокащ1Й.  [c.309]

Много работ посвящено воспламенению и горению порошка в распыленном виде [11, 97, 236, 237, 320]. В этом частном случае температура воспламенения обычно снижается. Влияние концентрации частиц в пылевом облаке на температуру воспламенения изучалось в работе [97]. Процессу воспламенения и горения одиночных частиц алюминия, вдуваемых в горячий поток газа, посвящено экспериментальное исследование [236], где осущест влялась фотографическая регистрация воспламенения и горения частиц.  [c.114]

Видно, что вязкость облака частиц при такой простой модели взаимодействия позволяет отнести рассматриваемую двухфазную систему к классу модели Оствальда — де Уаеля [53] неньютоновскей жидкости (т = (т I 1/2 (А А) А т и п — эмпирические постоянные). Этот факт был отмечен Томасом и описан в разд. 4.1. Приведенное выше соотношение также применимо для расчета напряжения сдвига в облаке частиц при свободномолекулярном движении газа.  [c.220]

Вязкость, обусловленная поперечным сдвигом, и объемная (вторая) вязкость. Роль сопротивления, подъемной силы и врахцающего момента, действующих на частицу в вязком слое, рассматрива.лась в разд. 2.3, Кроме того, этой проблеме посвящена работа [182]. Напряжение сдвига в облаке частиц, обусловленное градиентом скорости, можно приближенно выразить следующим образом  [c.220]

При рассмотрении передачи энергии излучения через множество частиц (дым, пламя, облако пыли, псевдоожиженный слой, туман и т. д.) необходимо учитывать поглощение, испускание и рассеяние, за исключением случаев, когда исследуемое множество частиц чрезвычайно разрежено. Основным источником информации по диффузному излучению являются работы в области коллоидной химии, астрофизики и метеорологии. Исчерпывающий обзор работ по этому вопросу, опубликованных до 1957 г., сделан Ван де Хюлстом [843].  [c.237]


Заряды частиц атмосферной пыли были впервые изучены Руд-жером [666, 6671. Согласно Руджеру, напряженность электрического поля во время пылевых бурь в пустыне Сахара обычно менее 200 в1м, причем пыль, как правило, заряжена положительно. Полярность пылевого облака может изменяться (становиться отрицательной), а напряженность достигать 500 в м или даже 10 в м. В данном месте как атмосферная пыль, так и земля стремятся приобрести отрицательный заряд. Изучая падение частиц плавленого кварца размером от 0,1 до 100 мк между электрически заряженными пластинами, Уитмен установил, что в зависимости от материала пластин множество частиц (0,13 г пыли) приобретает разные заряды 1875]  [c.434]

Деформационное старение развивается после х0Л0Д 10Й деформации при последующей выдержке при нормальной температуре и особенно при нагреве до относительно невысоких температур (например, для технического железа до 470 К). Деформационное старение возможно как в слабо пересыщенных, так и равновесных сплавах типа твердых растворов внедрения, в которых не происходит закалочное старение (например, в железе с содержанием углерода менее 0,006% и азота менее 0,01%). Механизм деформационного старения отличен от закалочного. Деформационное старение связано не с выделением какой-либо фазы, а с сегрегацией растворенного элемента на дислокациях, образовавшихся в процессе деформации. На них образуются облака Коттрелла. При последующей пластической деформации для движения дислокаций необходимо вырывание их из облаков Коттрелла. Последнее требует повышения усилий для деформирования, что и служит причиной упрочнения сплава.  [c.500]

Старение, вызванное предварительной пластической деформацией, называется статическим деформационным старением. Старение, развивающееся в процессе пластической деформации, называется динамическим. Условие динамического старения — определенное соотношение между скоростями деформации и диффузионным перемещением растворенных атомов. В данном случае происходит блокировка растворенными атомами дислокаций, движение которых при деформировании по каким-либо причинам замедляется, а вырывание дислокаций из облаков Коттрелла при ускорении их движения служит причиной упрочнения. Указанное выше соотношение устанавливается при определенных температурах, например для низкоуглеродистой стали в диапазоне 520...670 К. Частичное охрупчивание стали при этих температурах называется <асинеломкостью и>.  [c.500]

Полигонизация — процесс образования разделенных малоугловыми границами субзерен. Полигонизация представляет собой развитие возникшей при пластической деформации ячеистой структуры. Размытые, объемные сплетения дислокаций вокруг ячеек становятся более узкими и плоскими и превращаются в субграницы, а ячейки — в субзерна. Процесс развивается при температурах более высоких, чем температура отдыха. Субграницы образуются в результате поперечного скольжения и переползания дислокаций в направлении достройки или сокращения экстраплоскостей. Хао тически распределенные дислокации выстраиваются в вертикаль ные стенки. Тело субзерен практически очищается от дислокаций Решетки соседних субзерен получают небольшую разориентиров ку (до нескольких градусов). Скорость полигонизации контроли руется относительно медленной скоростью переползания дислока ций, которая определяется скоростью перемещения вакансий Примеси, образующие на дислокациях облака Коттрелла, тормо зят полигонизацию. Субзерна при продолжительной выдержке и повышении температуры склонны к коалесценции, т. е. укрупнению. Движущей силой в этом случае служит разность энергий субграниц до и после коалесценции. При дальнейшем повышении температуры получает развитие процесс первичной рекристаллизации.  [c.511]

Слово "фрактал", введенное Б.Б. Мандельбротом [3] для описания самоподобных структур с дробной размерностью, происходит от английского слова fra tional - дробный. Однако, строгое определение фрактала отсутствует наиболее часто фрактал связывают со структурой, состоящей из частей, которые в какой-то смысле подобны целому [4]. Природные структуры, как правило, фрактальны деревья, облака, берега рек, разветвленность ее притоков, система кровообращения, "морозные" узоры на стекле и т.п. В силу разнообразия и сложности естественных природных фрактальных объектов, для их исследования часто используются геометрические фракталы. Они были введены математиками еще в прошлом веке, но представления, выходившие за рамки традиционной геометрии, не привлекли к себе в то время со стороны представителей естественных наук должного внимания.  [c.78]

При отсутствии электрического поля электронное облако расположено симметрично относительно атомного ядра (рис. 141), а в электр1меском поле с напряженностью Е оно изменяет свою форму и центр отрицательно заряженного электронного облака уже не совпадает  [c.142]

Фис. 8.24. Сначала облако газа а),. затем Галактика (б) начинает сплю зциваться и, наконец, принимает -форму блина с более или менее сферическим центральным ядром (д).  [c.199]

Группа американских физиков во главе с Р. Хофштадтером изучает структуру нуклонов путем исследования упругого рассеяния электронов на нуклонах. На рисунке 119 показано распределение электрического заряда в протоне и нейтроне, полученное в Стэнфорде. Протону и нейтрону присущи одни и те же заряженные ме-зониые облака. В протоне этн облака складываются, а в нейтроне погашают друг друга. Это находится в согласии с исследованиями советских физиков.  [c.369]

Хофштадтер указывает, что еще рано приводить окончательные и даже в какой-то степени определенные подробности строения мезонных облаков или составляющих их тяжелых мезонов, но несомненно, что в ближайгние годы мы увидим, что окончательные значения структурных параметров нуклона будут выкристаллизованы в рамках новой модели протона и нейтрона, созданной на основе тяжелых мезонов. (При исследовании структуры нуклонов н согласования некоторых деталей в 1961 г. были открыты тяжелые мезоны (рЧ р", (Г, (о , т ).  [c.369]

Свойство частей быть подобными всей структуре в целом называют самоподобием. Интервал еамопо-добия различных природных объектов может содержать масштабы от долей микрометра при рассмотрении структуры пористых горных пород [7] и сплавов металлов до десятков километров при рассмотрении рельефа местности [8] и формы облаков. В качестве примеров естественных (природных) фракталов можно привести деревья, облака, реку и разветвленную сеть ее притоков, систему кровообращения человека, "морозные" узоры на стекле и т.д.  [c.25]

Свойство частей быть подобными всей структуре в целом называют самоподобием. Интервал самоподобия различны.х природных объектов может содержать масштабы от долей микрометра при рассмотрении структуры пористых горных пород [36] и сплавов металлов до десятков киломефов при рассмотрении рельефа местности [37] и формы Облаков. В качестве примеров естественных (природных) фракталов моясно привести деревья, облака, реку и разветвленную сеть ее притоков, систему кровообращения человека, "морозные" узоры на стекле и т.д. Самоподобие предполагает, что копирование и масштабирование некоторого "эталонного" образа позволяет природе легко создавать сложную многомасштабную структуру.  [c.88]


Смотреть страницы где упоминается термин Облака : [c.385]    [c.275]    [c.418]    [c.453]    [c.472]    [c.553]    [c.397]    [c.261]    [c.199]    [c.367]    [c.376]    [c.88]   
Инженерный справочник по космической технике Издание 2 (1977) -- [ c.38 ]



ПОИСК



Акустические облака

Акустические облака 352, VIII

Взаимодействие акустических возмущений с облаком частиц

Вихри в воздухе. Вихри в воде. Падение капель. Вихревое облако атомного взрыва. Вихревая модель турбулентности Снижение сопротивления Динамическая неустойчивость

Генеральная совокупность точек «облака

Глодин, А. Г. Елисеенко, Ф. Н. Лаврентьев, А. А. Хачатурьян, Ю. А. Мулин. Антикоррозионная и электроизоляционная защита металлических изделий в облаке порошкообразного пентапласта

Диффузии матрица Дорожки» в облаках

Зондирование облаков наземными лидарами

Измерение высоты верхушек облаков

Кавитационное облако

Конденсация в облаке испаренного вещества, разлетающегося в пустоту

Коттрелла облако

Лазерное зондирование аэрозолей и облаков

Лазерное зондирование аэрозолей и облаков самолетными лидарами

Мезонное облако

Наблюдение за перемещением облаков

Наблюдение конвективных облаков

Неустойчивое горение газа Облако» циркуляции газа сквозь пузырь

Нормаль к поверхности текучести Облако» примесей

Облака кристаллические

Облака перламутровые

Облака, образование

Облака, оптические и СВЧ-характсристики

Облако газа

Облако, состоящее из множества частиц

Оптические свойства туманов и облаков

Оптические явления в облаках, тумане и дожде

Отражение от облаков при оптической локации

Период полураспада я-Мезонное облако

Плотность заряда распределения облака

Площадка текучести зуб и облако Котрелла

Полет в терминах и с облаками

Пропускание и отражение солнечного излучения облаками

РАССЕЯНИЕ И РАСПРОСТРАНЕНИЕ ВОЛН В РАЗРЕЖЕННЫХ ОБЛАКАХ ДИСКРЕТНЫХ РАССЕИВАТЕЛЕЙ ПРИБЛИЖЕНИЕ ОДНОКРАТНОГО РАССЕЯНИЯ Рассеяние и поглощение волны отдельной частицей

Радиолокационные наблюдения дождя и облаков

Разлет газового облака

Распространение в пределах прямой видимости через разреженное облако частиц

Распространение волн в облаке больших частиц

Распространение волн в облаке больших частиц пределах прямой видимост

Распространение импульсов в облаке случайно распределенных рассеивателей

Рассеяние волн в разреженных облаках частиц

Рассеяние и ослабление облаком, содержащим множество частиц

Рассеяние импульсных волн в случайном облаке частиц

Рассеяние облаком, состоящим из большого числа частиц

Серебристые облака

Сферическая волна в облаке случайно распределенных частиц

ТЕОРИЯ МНОГОКРАТНОГО РАССЕЯНИЯ Теория многократного рассеяния волн на облаке неподвижных и движущихся рассеивателей и ее связь с теорией переноса

Теория многократного рассеяния волн и распространение импульсов в облаке случайных рассеивателей

Термши кучевых облаков

Уравнение для условных вероятностей облаков поляризаИнтеграл столкновений заряженных чйстац, учитывающий динамическую поляризацию плазмы

ЧАСТЬ И. ТЕОРИЯ ПЕРЕНОСА ИЗЛУЧЕНИЯ В СЛУЧАЙНОМ ОБЛАКЕ РАССЕИВАТЕЛЕЙ Теория переноса излучения в случайном облаке частиц



© 2025 Mash-xxl.info Реклама на сайте