Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий графит

Воздух-песок, алюминий, графит, медный катализатор Воздух-песок, железная руда  [c.348]

В качестве источника высокой частоты для частиц, употребляемых в реакторах, могут применяться закалочные индукционные генераторы с частотой 300—500 кгц. Для получения режима кипения слоя при высокочастотном способе нагрева частиц необходимо применять материалы с малой магнитной проницаемостью. Применение ферромагнитных материалов исключено, так как в этом случае частицы располагаются по магнитным силовым линиям. Как показали наши исследования, могут применяться медь, алюминий, графит.  [c.672]


Нейзильбер, бронзы М-1 (медь—железо-алюминий—графит) М-2 (медь—алюминий-марганец—графит) М-3 (медь—никель— марганец—графит)  [c.78]

Следовательно, поверхность нагреваемой детали (катода) должна быть несколько меньше поверхности анода. Обычно анодом является ванна, в которую налит электролит. В электролитах могут нагреваться твердые проводники сталь, чугун, латунь, алюминий, графит и т. д. На условия нагрева металлов в электролитах влияет их теплопроводность и не влияют их магнитные и электрические свойства.  [c.227]

В качестве конструкционных материалов при контакте с мед-но-аммиачным комплексом могут служить легированные стали, а также биметаллы, состоящие из легированной и углеродистой стали в местах углекислотной коррозии—хромоникелевые стали, алюминий, графит. Из лакокрасочных материалов стойки покрытия на основе фуриловых лаков (ФЛ—1 и ФЛ—10).  [c.64]

Раскисляющие — ферросплавы, алюминий, графит и др.  [c.80]

Металлокерамические фрикционные материалы чаще всего состоят из металлических и неметаллических компонентов, при этом металлические составляющие обеспечивают материалу высокую теплопроводность и прирабатываемость, а неметаллические (окись кремния, окись алюминия, графит и т. д.) повышают коэффициент трения и уменьшают склонность к заеданию.  [c.395]

Раскисляющие вещества, которые обладают большим сродством к кислороду и поэтому восстанавливают металл шва. Раскислителями служат ферросплавы, алюминий, графит и др.  [c.49]

Ферросилиций, ферромарганец, феррованадий, феррохром, ферромолибден, алюминий, графит  [c.247]

Материалом инструментов являются медь, алюминий, графит. Износ инструмента по сравнению с электроискровой обработкой значительно меньше (в 3—5 раз), а производительность достигает 5000—15 000 мм мин при грубых режимах и относительно большой шероховатости обработки поверхности.  [c.247]

Хотя, как отмечалось выше, смеш,ение определяемое формулой (3.3.1), не зависит от выбора материала рассеивателя, однако важно, чтобы рассеиватель состоял из сравнительно легких атомов (например, парафин, графит, алюминий). Дело в том, что в легких атомах относительно высока доля электронов, слабо связанных с атомным ядром. Рассеяние рентгеновских лучей на этих электронах и обусловливает эффект, описываемый формулой (3.3.1).  [c.75]

Технические полупроводники могут быть разбиты на четыре группы 1) кристаллы с атомной решеткой (графит, кремний, германий) и с молекулярной решеткой (селен, теллур, сурьма, мышьяк, фосфор) 2) различные окислы меди, цинка, кадмия, титана, молибдена, вольфрама, никеля и др. 3) сульфиды (сернистые соединения), селениды (соединения с селеном), теллуриды (соединения с теллуром) свинца, меди, кадмия и др. 4) химические соединения некоторых элементов третьей группы периодической таблицы элементов (алюминий, галий, индий) с элементами пятой группы (фосфор, сурьма, мышьяк) и др. К числу полупроводников относятся некоторые органические материалы, в частности полимеры, имеющие соответствующую полупроводникам по ширине запрещенную энергетическую зону. Особенности свойств некоторых органических полупроводников, как гибкость, возможность получения пленок при достаточно большой механической прочности, заставляют считать их перспективными.  [c.276]


Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]

На корабле имеется целый ряд узлов конструкций, где использование перспективных композиций могло бы обеспечить существенную экономию массы или улучшение характеристик. Работы были сконцентрированы на шести основных вариантах композиций бор — эпоксидная смола, графит — эпоксидная смола, бор — полиимид, графит — полиимид, бор — алюминий и PH В-49 — эпоксидная смола. Исследовали следующие элементы конструкций (включая разработку демонстрационных образцов) 1) панели фюзеляжей 2) рамы фюзеляжей 3) каркас отсеков крыльев 4) ребра, работающие на срез 5) люки шасси 6) сосуды, работающие под давлением (бандажированные) 7) несущие элементы силового оборудования, трубчатые фермы, панели и брусья 8) несущую конструкцию системы тепловой защиты 9) панели, разделяющие ступени 10) панели радиаторов.  [c.118]

Пеппера и др. [32], на поверхности раздела в композитном материале алюминий — графит, изготовленном методом диффузионной сварки, был обнаружен карбид алюминия. При температурах выше 970 К карбид образуется быстро, но, реагируя на воздухе с парами воды, разлагается с выделением метана. Если материал изготовлен в хорошо контролируемых тсловиях, то он не содержит карбида алюминия.  [c.96]

Алюминий в количестве более 0,2% препятствует образованию шаровидного графита и снижает механические свойства чугуна. В чугуне, содержащем 0,34% алюминия, графит имел компактную форму и небольшое количество сс роидов непра-зильной 4юрмы. При наличии указанных примесей в чугуне вредное их влияние нейтрализуется церием.  [c.155]

Основной упрочняющей фазой в ДКМ А1 - С служит карбид алюминия. Дисперсно-упрочненные композиты получают методами порошковой металлургии и литья. Износостойкие ДКМ А1 - С получают также путем механического замешивания подогретого (873К) порошка графита в расплаве алюминия. Для улучшения смачивания алюминием графит покрывают медью.  [c.119]

В отличие от других известных способов этот способ позволяет выделить алюминий из интерметаллических соединений. Основным недостатком способа является высокая химическая активность моногалогенидов алюминия, что затрудняет аппаратурное оформление процесса. Огнеупоры, имеющие в своем составе окислы кальция, кремния, магния и титана, непригодны из-за взаимодействия с ними субгаллоидов алюминия. Графит при температуре выше 900°С разрушается ими с образованием карбида алюминия, наиболее стойкими материалами являются Ti nSi .  [c.392]


Раскисляющие вещества (ферромарганец, ферротй-тан, ферросилиций, алюминий, графит, легирующие элементы электродного стержня из легированной стали) раскисляют — восстанавливают находящиеся в расплавленном металле окислы, образовавшиеся на определенных этапах процесса сварки, когда расплавленный металл контактирует с атмосферой дуги, шлаком и воздухом. Раскислители имеют большее, чем железо, сходство с кислородом и другими элементами, окислы которых требуется удалить из металла шва. Соединяясь с кислородом, они образуют окислы, которые всплывают на поверхность сварочной ванны. Это обеспечивает получение сварного шва высокого качества.  [c.53]

Шлакообразующие составляющие служат для защиты расплавленного металла от воздействия кислорода и азота воздуха путем образования шлаковых оболочек на поверхности капель электродного металла, переходящих через дуговой промежуток, и для образования шлакового покрова на поверхности расплавленного металла шва. Шлакообразую-щие компоненты представляют собой окислы металлов и металлоидов, которые вводят в покрытие в виде титанового концентрата (ильменита), марганцевой руды (пиролюзита), полевого шпата, мрамора, мела, каолина, кварцевого песка, доломита и других веществ. Газообразующие вещества при сгорании создают газовую защитную атмосферу, предохраняющую расплавленный металл от воздействия кислорода и азота воздуха. Их вводят в покрытие в виде органических соединений древесной муки, хлопчатобумажной пряжи, крахмала, пищевой муки, декстрина, оксицеллюлозы и т. д. Раскисляющие элементы обладают большим сродством к кислороду, чем железо. К ним относятся марганец, кремний, титан, алюминий, графит и др.  [c.96]

Кремний способствует эвтектоидному распаду аустенита на феррит и графит при малых переохлаждениях аустенита. Это приводит к образованию большого количества феррита в толстостенных частях отливок. Для воспрепятствования этому явлению применяют инокулирующее модифицирование чугуна снижают содержание кремния в нем до уровня, не вызывающего выделение феррита в толстостенных частях отливок, а для предотвращения отбела в тонкостенной части перед самой заливкой >аеталла в формы в него вводят в небольшом количестве графитизирующие добавки — ферросилиций, силикокальций, алюминий, графит. В расплаве возникает временная субмикроскопическая неоднородность (повышенная концентрация флуктуаций), приводящая к образованию увеличенного (против равновесного) количества центров графитизации, и чугун затвердевает без отбела.  [c.49]

Ниобий подобно танталу обладает многими ценными свойствами. Поэтому большое значение приобретают покрытия из ниобия, дающие возможность значительно экономить металл. Покрытия из ниобия можно наносить на различные материалы, например сталь, нжель, медь, а также на кварц, окись алюминия. графит.  [c.188]

Этот метод нашел широкое применение в промышленности для защиты крупногабаритных конструкций в собранном виде железнодорожные мосты, газгольдеры, резервуары и т. п. Рас-пыливают обычно цинк, алюминий, медь, углеродистую сталь, нержавеющие стали и др. Этот способ пригоден для нанесения иокрьп ий на неметаллические материалы — керамику, бетсн , пса1)Н, граф Т, пластмассы, картон и т. и.  [c.323]

К конструкционным материалам в реакторах предъявляется дополнительное требование радиационной стойкости, т. е. длительного сохранения физических и химических свойств в условиях интенсивнейшего нейтронного облучения. Особенно опасны коррозия и падение механической прочности. Так, коррозия оболочек твэлов и теплоносителей может привести к нарушению герметичности и тем самым к радиоактивному заражению теплоносителя, а иногда и к аварии. Для изготовления конструктивных элементов применяются алюминий, его сплавы с магнием или бериллием, цирконий, керамические материалы, нержавеющая сталь, графит, покрытия из ниобия, молибдена, никеля и некоторые другие материалы.  [c.582]

Материалы на основе фенолформальдегидных полимеров (ФФП). Фенолформальдегидные полимеры широко применяют при создании актифрикционных полимерных материалов ввиду их повышенной термической и химической стойкости и износостойкости. Для улучшения триботехнических свойств в ФФП вводят специальные наполнители (графит, свинец, M0S2, оксиды алюминия и меди, кремний, порошки алюминия, железа и меди, а также базальтовые, стеклянные и углеродные волокна, технический углерод, асбест, различные волокна), что позволяет получить самосмазывающиеся материалы с низкими коэффициентом трения без смазки (0,04-0,06) и интенсивностью изнашивания (10 -10 " ) для подшипников скольжения, уплотнений, направляющих, работающих при повышенных температурах. Известны самосмазывающиеся материалы на основе ФФП следующих марок АТМ-1, AMT-IE, Вилан-9Б, Синтек-2, АМАН-24.  [c.37]

Известно, ЧТО в зависимости от назначения покрытий и для придания специальных свойств в покрытия в качестве дисперсной фазы могут добавляться твердые упрочняющие абразивные частицы (окислы циркония и алюминия, каолин, карбиды кремния, титана, вольфрама) и мягкие слоистые частицы твердых смазок (гексагональный нитрид бора, графит, дисульфид молибдена и др.). Для увеличения твердости и сопротивления истиранию в покрытие включается от 25 до 50 % неметаллических частиц, таких, как карбиды, оксиды, бориды, нитриды. Включение в покрытие дисперсных частиц влияет на водородосодержание и величину внутренних напряжений осадков.  [c.106]

Некоторые неметаллические материалы, например графит, могут увеличивать коррозию металлов. Контакт графита с железом или алюминием вызывает сильную коррозию этих "металлов, что обусловлено развитой поверхностью графита, способствующей адсорбщш кислорода или других деполяризаторов. Поэтому графитовые сальники или графитовые уплотнительные набивки в системах, подводящих электролит к ответственному оборудованию, нежелательны во избежание его засорения выпадающими частичками графита.  [c.202]


Промышленный вычислительный томограф ВТ-1000 максимальный диаметр контролируемого изделия 1000 мм приведенная толщина контролируемого изделия 450 мм объекты контроля — цилиндрические и конические изделия сложной внутренней структуры материал изделия — графит, углерод — углеродистые конструкции максимальный диаметр изделий из алюминия, магния и других легких сплавов 180 мм максимальное разрешение по ЛКО 0,5% матрица изображения 256X256 элементов толщина слоя  [c.471]

Изменения технологических параметров напыления, диктуемые техническим заданием предварительный подогрев подложки перед напылением, кратковременный отвод горелки из зоны напыления, оплавление покрытия с поверхности как его охлаждения, так и в процессе напыления — неизбежно вызывают структурные изменения в теле покрытия и приводят к различному характеру отрыва его от подложки (когезионному, адгезионному или смешанному) при испытаниях на прочность сцепления. Эти обстоятельства делают необходимым исследование фракто-графии излома покрытия, которое позволяет судить как о прочности самих кристаллических зерен, так и о прочности когезионной связи между ними в поликристаллической окиси алюминия. Методика эксперимента. Плазменное напыление  [c.127]

Все композиции были опробованы в качестве покрытия (обмазки) на графите марки ГМЗ по порошково-обжиговой технологии. Оказалось, что при медленном разогреве от 20 до 1400 °С в воздуипюй атмосфере все композиции способны формироваться из предварительно распределенного иа поверхности графита слоя порошковой смеси в виде целостных прочно сцепленных с ним покрытий. По внешнему виду и в этом случае. лучшим оказалось покрытие е добавкой оксида алюминия. Оно в отличие от остальных покрытий было ровно остеклованным. На поверхности других покрытий в процессе термообработки появлялись локальные дефекты в виде пузырепия.  [c.109]

Алюминий Бериллий Ванадий Графит 15 Сг 8Fe Ni (инко-нель) Магний С СбОО с <400 С 400-475 Молибден Никель Стали нержавеющая ферритные (12— 27% Сг) Титан Цирконий С С С С525 С <400—500  [c.237]

В работе [12] представлены численные результаты для квадратной укладки круговых включений — волокон — при объемной доле материала волокна 40, 50 и 60%. Были рассмотрены случаи нагрузки как одного из указанных выше типов, так и комбинированные характеристики материала соответствовали в основном бороэпоксидиым композитам, но были исследованы также композиты стекло — эпоксид, графит — эпоксид и бор — алюминий. Хотя полученные результаты решения таких задач не позволяют точно установить пределы изменения параметров композита, они дают возможность хорошо предсказывать развитие зон пластичности при упругопластическом деформировании.  [c.226]

Процесс образования связи обусловлен взаимодействием электронов на атомном уровне. Силы взаимодействия являются силами ближнего порядка, и поэтому они начинают действовать лишь тогда, когда расстояния между поверхностями составляющих композита не превышают нескольких диаметров атома. Последнее требование имеет большое значение в смежных областях, в частности, при пайке твердым припоем. Например, затруднения при пайке алюминия связаны с присутствием под припрем окис-ных лленок. Механическое разрушение таких пленок (например, при ультразвуковой пайке железа) приводит к немедленному смачиванию и растворению основного материала в расплавленном припое. Можно привести два примера из области композитов. Пеппер и др. [32] заметили, что расплавленный алюминий не омачивает графитовую пряжу в состоянии поставки до тех пор, пока ее не подвергнут предварительной обработке для удаления поверхностных загрязнений. Подобные же наблюдения были сделаны при исследовании композита никель — графит [27].  [c.83]

Окись алюминия. Влияние облучения на стабильность размеров AI2O3, вероятно, невелико. Уилер [217 1 измерил макроскопический рост монокристаллов сапфира после облучения потоком 2-101 нейтрон/см при 350° С. Изменения размеров не превышали 0,015%. В табл. 4.1 показано, как изменились размеры и некоторые физические характеристики AI2O3 в результате облучения. Мартин [143] также изучал действие нейтронного облучения при 30° С на синтетический сапфир. Увеличение размеров AljOa как функция потока нейтронов показано на рис. 4.1. При 1,46-10 нейтрон/см увеличение размеров составило только 0,048% вдоль оси с и 0,03% перпендикулярно к оси с (вдоль оси а). Таким образом, наблюдается некоторая анизотропия в изменении размеров, но не такая большая, как, например, в графите. Отжиг такого образца, как  [c.143]

Еще более усложняет изучение проблем, связанных с разрушением, разнообразие материалов арматуры и матрицы, которые позволяют создавать композиты с любыми необходимыми свойствами. Наиболее распространены следующие типы армирующих волокон. Волокна Е- и S-стекля—низкомодульные, умеренно прочные при растяжении и сжатии с большими предельными деформациями. Волокна бора — высокомодульные, высокопрочные при растяжении и сжатии. Углеволокна могут сочетать различные свойства — высокую прочность и низкий модуль упругости или низкую прочность и высокий модуль. Органоволокна (Кевлар-49) — высокомодульные, высокопрочные при растяжении, весьма низкопрочные при сжатии. Волокна FP ) —высокомодульные, высокопрочные при сжатии, довольно низкопрочные при растяжении. В качестве связующего (матрицы) используются, как правило, синтетические смолы (термореактивные и термопластичные), графит и сплавы алюминия.  [c.38]

Библиография работ по усталости слоистых композитов весьма обширна. Результаты последних исследований можно найти в [45—47]. Уравнения в форме (6.19) не нашли, по-видимому, широкого применения для анализа поведения слоистых композитов с концентраторами напряжений. Это не удивительно по причинам, отмеченным ранее. Однако такие уравнения успешно использованы в работе [48] для расчета скорости роста трещины в слоистых стальных пластинах и распространения расслоения в слоистых образцах графит — алюминий или S-стекло — алюминий. В работе [49] при сопоставлении данных для слоистого композита в виде мата из рубленого Е-стекла на полиэфирном связующем со степенным уравнением в форме (6.19) найдено, что /г 5. В работе [50] обнаружено, что для стеклопластика (S ot hply 1002) со схемой армирования [90°/0790°]s при нагружении в направлении 0° соответствие с уравнением (6.19) можно получить, положив п= 1. Во всех этих работах предполагалось, что основной механизм сопротивления росту трещины состоит в затуплении магистральной трещины ири прорастании перед ней в перпендикулярном направлении вторичных трещин.  [c.243]


Смотреть страницы где упоминается термин Алюминий графит : [c.194]    [c.152]    [c.18]    [c.448]    [c.91]    [c.62]    [c.47]    [c.147]    [c.122]    [c.39]    [c.91]    [c.7]    [c.115]    [c.213]   
Поверхности раздела в металлических композитах Том 1 (1978) -- [ c.0 ]



ПОИСК



Графит

Дп-граф

Теплоемкость алюминия в графита



© 2025 Mash-xxl.info Реклама на сайте