Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Запрещенная зона в полупроводниках

Инверсию в полупроводниках возможно получить и при возбуждении потоком фотонов — оптическое возбуждение. При этом применяются люминесцентные кристаллы. Под воздействием фотонов, энергия которых hv больше ширины запрещенной зоны, в полупроводнике происходит переход электронов из валентной зоны в зону проводимости с образованием электронно-дырочных пар. Наиболее целесообразно производить накачку в узком интервале частот, когда энергия кванта лишь немногим больше АИ7. В этом случае инверсия электронов и дырок образуется в основном между уровнями, залегающими у потолка валентной зоны и дна зоны проводимости.  [c.63]


Значение энергии Ферми выбирается таким образом, чтобы получалось правильное полное число электронов. В собственном полупроводнике необходимо, чтобы энергия Ферми лежала вблизи середины запрещенной зоны. В полупроводнике п-типа энергия Ферми лежит много ближе к краю зоны проводимости, в результате чего число электронов намного превосходит число дырок. Аналогично в полупроводнике р-типа энергия Ферми лежит очень близко к краю валентной зоны.  [c.304]

Металлическая составляющая связи, ионная составляющая связи и ширина запрещенной зоны в полупроводниках  [c.65]

Собственное поглощение. Оно связано с переходами электронов из валентной зоны в зону проводимости. Выше уже отмечалось, что в идеальном полупроводнике при 7 = 0К валентная зона заполнена электронами полностью, так что переходы электронов под действием возбуждения в состояние с большей энергией в этой же зоне невозможны. Единственно возможным процессом здесь является поглощение фотона с энергией, достаточной для переброса электронов через запрещенную зону. В результате этого в зоне проводимости появляется свободный электрон, а в валентной зоне—дырка. Если к кристаллу приложить электрическое поле, то образовавшиеся в результате поглощения света свободные носители заряда приходят в движение, т. е. возникает фотопроводимость. Таким образом, для фотонов с энергией hvдлин волн (т. е. больших hv) имеет место сплошной спектр интенсивного поглощения, ограниченный более или менее крутым краем поглощения при hvинфракрасной области спектра. В зависимости от структуры энергетических зон межзонное поглощение может быть связано с прямыми или непрямыми оптическими переходами.  [c.307]

Квантовый выход внутреннего фотоэффекта. Предположим теперь, что полупроводник освещается монохроматическим светом, частота которого выше пороговой частоты для внутреннего фотоэффекта. Последняя определяется шириной запрещенной зоны в собственных полупроводниках и энергией ионизации донорных или акцепторных примесей в примесных полупроводниках. При поглощении фотонов электронами валентной зоны или примесных уровней будут происходить соответствующие квантовые переходы, приводящие к образованию дополнительных (неравновесных) носителей заряда, которые и обусловливают фотопроводимость.  [c.176]


Приведенные данные показывают, что электрические и оптические свойства аморфных полупроводников похожи на свойства кристаллических полупроводников, но не тождественны им. Это сходство, как показал специальный анализ, обусловлено тем, что энергетический спектр электронов и плотность состояний для ковалентных веществ, которым относятся полупроводники, определяются в значительной мере ближним порядком в расположении атомов, поскольку ковалентные связи короткодействующие. Поэтому кривые N (е) для кристаллических и аморфных веществ во многом схожи, хотя и не идентичны. Для обоих типов веществ обнаружены энергетические зоны валентная, запрещенная и проводимости. Близкими оказались и общие формы распределения состояний в валентных зонах и зонах проводимости. В то же время структура состояний в запрещенной зоне в некристаллических полупроводниках оказалась отличной от кристаллических. Вместо четко очерченной запрещенной зоны идеальных кристаллических полупроводников запрещенная зона аморфных полупроводников содержит обусловленные топологическим беспорядком локализованные состояния, формирующие хвосты плотности состояний выше и ниже обычных зон. Широко использующиеся модели кривых показаны на рис. 12.7 [68]. На рисунке 12.7, а показана кривая по модели (Мотта и Дэвиса, согласно которой хвосты локализованных состояний распространяются в запрещенную зону на несколько десятых эВ. Поэтому в этой модели кроме краев зон проводимости (бс) и валентной (ev) вводятся границы областей локализованных состояний (соответственно гл и ев). Помимо этого авторы модели предположили, что вблизи середины запрещенной зоны за счет дефектов в случайной сетке связей (вакансии, незанятые связи и т. п.) возникает дополнительная зона энергетических уровней. Расщепление этой зоны на донорную и акцепторную части (см. рис. 12.7, б) приводит к закреплению уровня Ферми (здесь донорная часть обусловлена лишними незанятыми связями, акцепторная — недостающими по аналогии с кристаллическими полупроводниками). Наконец, в последнее время было показано, что за счет некоторых дефектов могут существовать и отщепленные от зон локализованные состояния (см. рис. 12.7, в). Приведенный вид кривой Л (е) позволяет объяснить многие физические свойства. Так, например, в низкотемпературном пределе проводимость должна отсутствовать. При очень низких температурах проводимость может осуществляться туннелированием (с термической активацией) между состояниями на уровне Ферми, и проводимость будет описываться формулой (12.4). При более высоких температурах носители заряда будут возбуждаться в локализованные состояния в хвостах. При этом перенос заряда  [c.285]

Если сравнить распределение плотности состояний по энергиям в кристаллических и некристаллических полупроводниках, то основным их отличием является присутствие в запрещенной зоне некристаллических полупроводников значительного количества разрешенных состояний (рис. 4, г). Таким образом, запрещенная зона некристаллических полупроводников не является запрещенной в полном смысле. Вследствие отсутствия дальнего порядка в диапазон энергий, соответствующий запрещенной зоне, из валентной зоны и зоны проводимости сдвигается часть разрешенных энергетических уровней, так называемые хвосты валентной зоны и зоны проводимости (заштрихованные области слева и справа).  [c.10]

Электропроводность диэлектриков в отличие от полупроводников чаще всего носит не электронный, а ионный характер. Это связано с тем, что ширина запрещенной зоны в диэлектриках АЯ >кГ и лишь ничтожное количество  [c.98]

Неорганические стекла обладают во многих случаях полупроводниковыми свойствами. Теория аморфных полупроводников указывает, что при плавлении кристаллов нарушается только- дальний порядок симметрии, ближний же порядок сохраняется. Энергетический спектр стеклообразного полупроводника состоит также из зон, как и у кристаллического, но из-за разупорядоченного строения происходит расширение валентной и свободной зон и сужение запрещенной зоны. В отличие от обычных стекол с преобладанием ионной проводимости стеклообразные полупроводники обладают чисто электронной проводимостью.  [c.192]


Акцепторы. Другие примеси могут внести незаполненные уровни, располагающиеся в запрещенной зоне основного полупроводника вблизи потолка валентной зоны. Тепловое возбуждение  [c.233]

Зона, образованная уровнями валентных электронов невозбужденных атомов, получила название валентной зоны (ВЗ) кристалла. Выше нее располагается запрещенная зона, имеющая ширину AW", в пределах которой электрон не может находиться, а еще выше размещается разрешенная зона — зона проводимости (ЗП). Энергетические зоны в полупроводнике не локализованы возле какого-либо отдельного атома — их следует отнести ко всему кристаллу, так что кристалл с этой точки зрения можно считать одной огромной молекулой. Зона проводимости называется так потому, что при приложении разности потенциалов к полупроводнику через проводник проходит электрический ток, в котором могут участвовать только электроны, находящиеся при данных условиях в зоне проводимости. Электроны, находящиеся в валентной зоне, не могут перемещаться под действием электрического поля, поскольку такое движение связано с увеличением энергии электрона, причем он должен перейти на более высоко расположенный энергетический уровень, однако в валентной зоне все уровни заняты электронами.  [c.55]

Полупроводниковые лазеры используют в качестве активных элементов неорганические вещества (кристаллы), обладающие свойствами полупроводников. В отличие от лазеров на примесных кристаллах генерация излучения в полупроводниках происходит не на переходах между уровнями примесных ионов, а на переходах между зоной проводимости и валентной зоной или между зонами и уровними, образуемыми примесями в запрещенной зоне, самого полупроводника. Таким образом, активным веществом является сама кристаллическая матрица, а примеси служат источником зарядов (электронов и дырок), рекомбинация которых приводит к возникновению фотонов.  [c.755]

В рассмотренном случае на некотором расстоянии от контакта всегда будет иметь место слой, для которого расстояния от потолка валентной зоны и от дна зоны проводимости до уровня Ферми одинаковы и равны половине ширины запрещенной зоны. В этом слое, как и в собственном полупроводнике, концентрации электронов и дырок равны. Он является границей между областями п- и г7-типов электропроводности в полупроводнике.  [c.74]

Общие представления зонной теории твердого тела, приведенные в 3, указывают, что для полупроводников характерно наличие запрещенной зоны в энергетической диаграмме (см. рис. 20).  [c.284]

Для большинства полупроводниковых приборов используются примесные полупроводники. Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда появляется при возможно более высокой температуре, т. е. полупроводники с достаточно широкой запрещенной зоной. В рабочем интервале температур поставщиками свободных носителей заряда являются примеси. Примесями в простых полупроводниках служат чужеродные атомы.  [c.325]

Энергия активации примесных атомов меньше, чем ширина запрещенной зоны основного полупроводника, а потому при нагреве тела переброс электронов примеси будет опережать возбуждение электронов основной решетки. Положительные заряды, возникшие на отдаленных друг от друга примесных атомах (на рис. 8-1, б уровни примеси показаны с разрывами), остаются локализованными, т. е. не могут блуждать по кристаллу и участвовать в электропроводности.  [c.326]

В противоположном случае примесь может внести незаполненные уровни, располагающиеся в запрещенной зоне основного полупроводника вблизи от верхнего края валентной зоны. Тепловое возбуждение будет в первую очередь забрасывать электроны из валентной зоны на эти свободные примесные уровни. Ввиду разобщенности атомов примеси, электроны, заброшенные на примесные уровни, не участвуют в электрическом токе. Такой полупроводник будет иметь концентрацию дырок большую, чем концентрацию электронов, перешедших из валентной зоны в зону проводимости, и его относят к р - т и п у. Примеси, захватывающие электроны из валентной зоны полупроводника, называют акцепторами (рис. 8-1, б).  [c.326]

Согласно зонной теории электропроводности полупроводники отличаются малой шириной запрещенной зоны. В табл. 5-1 показана ширина-запрещенной зоны беспримесных полупроводниковых элементов.  [c.270]

К изоляторам относят вещества с шириной запрещенной зоны более 5 эВ. Это достаточно большая величина, так что у изоляторов количество электронов, переходящих в зону проводимости, очень невелико. К, полупроводникам относят вещества с шириной запрещенной зоны в пределах 0,01—5 эВ.  [c.17]

Другой идеализацией, применяемой для описания электронной структуры неупорядоченных материалов, является кристаллическая фаза полупроводника. Эта модель уже содержит зонную структуру с запрещенной зоной в качестве первого приближения. Природа беспорядка , накладываемого на кристалл, часто достаточно точно не определяется и зависит от типа неупорядоченного материала. Поэтому следствия, выводимые из модели такого типа, могут быть несколько неопределенными.  [c.86]

Под действием света, падающего на поверхность полупроводника, в нем образуются пары л-р-носителей (электрон-дырка). Неосновные носители (дырки в полупроводнике л-типа и электроны в р-полупроводнике) диффундируют в область п-р-перехода, втягиваются в него и образуют пространственный заряд по другую сторону перехода. Таким образом, происходит накопление носителей тока разных знаков в двух противоположных частях полупроводника. Однако этот процесс не может продолжаться сколь угодно долго, так как в результате накопления зарядов возникает электрическое поле, препятствующее дальнейшим переходам. Таким образом, наступает динамическое равновесие между переходами электр01 0в (дырок) в одну и другую сторону. В результате образуется постоянная разность потенциалов (фото-э. д. с. ), не превьппающая ширины запрещенной зоны в полупроводнике, выраженной в вольтах.  [c.443]


Для уменьшения ширины запрещенной зоны в полупроводник вводят примеси, которые создают отдельные местные энергетические зоны. Чтобы создать инверсную заселенность, используют различные методы — либо перевозбуждают с помощью оптического излучения, либо ударной ионизацией, либо с помощью импульсов электрического тока. Последний метод позволяет получить инверсную населенность в полупроводниках с различной Шириной запрещенной зоны. Это приводит к тому, что возникают предпосылки к получению излучения в диапазоне от далекой инфракрасной области до ультрафиолетовой. При этом сравнительно легко получить кпд  [c.37]

Механизм нелинейности в полупроводниках связан с характером оптического возбуждения в материале. При поглощении квантов с энергией, меньшей ширины запрещенной зоны, в полупроводнике образуются экситоны [10]. Свободный экситон представляет собой связанное состояние электрона и дырки (связь осуществляется посредством кулоновского взаимодейст-  [c.57]

Халькогенидные стеклообразные полупроводники менее чувствительны к введению в них примесей. Это связано с особеннностя-ми химических связей в этих материалах. В то же время исследования последних лет дают основание говорить о возможности изменять спектр локальных состояний в запрещенной зоне этих полупроводников путем введения примесных атомов.  [c.367]

В области очень низких температур, когда ионизация примесных уровней перестает быть полной, уровень Ферми занимает промежуточное положение (конкретно для донорного полупроводника) между донорным уровнем и дно.м зоны проводимости. Общий ход изменения положения уровня Ферми с температурой внутри запрещенной зоны (в отсут-ств1ие Вырожяен1ия) пю,каза1Н на рис. 43, где пунктиром обозначено положение уровня Ферми в собственной области (а — донорный образец, б — акцепторный).  [c.118]

В проводниках валентная зона не заполнена электронами полностью в полупроводниках и изоляторах валентная зона полностью заполнена электронами, а зона проводимости пустая. Ширина энергетической щели (полосы запрещенных энергий) в полупроводниках составляет около одного элек-троновольта, а в изоляторах порядка 5 эв.  [c.602]

Собственный полупроводник — полупроводник, не содержащий примесей, влияющих на его электропроводность. Общие представления зонной теории твердого тела, приведенные во введении, указывают, что для полупроводников характерно наличие не очень широкой запрещенной зоны в энергетической диаграмме (см. рис. В-8). Ширина запрещенной зоны полупроводниковых элементов приведена в табл. 8-2. Для наиболее широко используемых полупроводпикоп она составляет (0,8—4,0)-10" Дж (0,5—2,5 эВ). На рис. 8-1, а приведена энергетическая диаграмма собственного полупроводника, т. е.  [c.231]

Общие представления. Для большинства полупроводниковых приборов используются примесные полупроводники. Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда появляется при возможно более высокой температуре, т. е. полупроводники с достаточно широкой запрещенной зоной. В рабочем интервале температур поставщиками свободных носителей заряда являются примеси. Примесями в простых полупроводниках служат чужеродные атомы. Под примесями в полупроводниковых химических соединениях понимают не только включения атомов посторонних элементов, но и избыточные по стехиометрическому составу атомы тех самых элементов, которые входят в химическую формулу самого соединения. Кроме того, роль примесей играют всевозможные дефекты кристаллической решетки пустые узлы, атомы или ионы, оказавшиеся в междоузлиях решетки, дислокации или сдвиги, возникающие при пластической деформации кристалла, микротре-дины и т. д. (стр. 12). Если примесные атомы находятся в узлах кристаллической решетки, то они называются примесями замещения, если в междоузлиях — примесями внедрения.  [c.233]

Доноры. Заполненные при отсутствии внешних энергетических воздействий (теплота, свет) примесные уровни расположены р запрещенной зоне около дна зоны проводимости (рис. 8-1, б). При этом энергия активации примесных атомов меньше, чем ширина запрещенной зоны основного полупроводника, а потому при нагреве тела переброс электронов примеси будет опережать возбуждение злектронов решетки. Положительные заряды, возникшие у отдален-ь ых друг от друга примесных атомов (на рис. 8-1,6 уровни примеси г оказаны с разрывами), остаются локализованными, т. е. не могут блуждать по кристаллу и участвовать в электропроводности. Полу-лроводник с такой примесью имеет концентрацию электронов, большую, чем концентрация дырок, появившихся за счет перехода электронов из валентной зоны в зону проводимости, и его называют полупроводником п-типа, а примеси, поставляющие электроны в зону проводимости, — донорами.  [c.233]

Так как в собственном полупроводнике количество электронов Б зоне проводимости должно быть равно количеству дырок в валентной зоне, то, как легко видеть из рис. 6.1, б, уровень Ферми должен располагаться в этих полупроводниках примерно в середине запрещенной зоны (более точно его положение будет определено ниже). В этом случае условие невырожденности (6.1) будет выполнено, если Egl2 > kT, т. е. если Eg> 2 kT. При комнатной температуре kT = 0,025 эВ. Ширина же запрещенной зоны у полупроводников обычно больше 0,1 эВ (она равна г 0,7 эБ у германия, 1,1 эВ у кремния, 1,35 эВ у арсенида галлия, 0,35 эВ у арсеннда индия, 0,177 эВ у антимонида индия и т. д.). Поэтому электронный газ в собственных полупроводниках является невырожденным и подчиняется статистике Максвелла —Больцмана. Этот вывод справедлив и для дырок, находящихся в валентной зоне.  [c.160]

Нелегированный a-Si H имеет большую фотопроводимость в видимой области спектра. Фоточувствительность (отношение фотопроводимости к темновой проводимости) составляет 10 ... 10 . При легировании фотопроводимость возрастает, а фоточувствительность уменьшается. Аналогичные закономерности наблюдаются и в твердых растворах на основе a-Si H, которые обладают меньшей фотопроводимостью и фоточувствительностью, чем сам гидрированный кремний. При температурах выше комнатной основными центрами рекомбинации неосновных носителей заряда в аморфных гидрированных полупроводниках являются оборванные связи, концентрация которых в твердых растворах всегда больше, чем в a-Si H. Ширина оптической запрещенной зоны в аморфных гидрированных полупроводниках возрастает по мере увеличения концентрации в них водорода, и для a-Si H она составляет 1,6...1,8эВ. Введение в пленки a-Si H германия позволяет уменьшить эту величину до 1,0 эВ, а введение углерода и азота увеличить ее до значений 2,5...3,2эВ и 5 эВ соответственно.  [c.103]

Впервые акустические колебания с периодом, меньшим 100 ПС, были зарегистрированы в [77]. Для возбуждения и регистрации акустических волн в аморфных пленках SiOa и АзгТез использовались пикосекундные оптические импульсы (т = 1 пс) с энергией кванта hv = =2 эВ, следовавшие с большой частотой повторения Vn=0,5 МГц. Импульсы возбуждающей последовательности имели энергию нДж, зондирующие — примерно на два порядка меньшую. Эксперимент заключался в измерении прохождения через пленку и отражения зондирующих импульсов в зависимости от их задержки по отношению к возбуждающим. На фоне монотонно уменьшающегося сигнала, вызванного фотовозбуждением носителей и их релаксацией, наблюдались затухающие осцилляции коэффициентов отражения и прохождения Тпр света, связанные с модуляцией зонной структуры пленок возбужденными в них акустическими волнами (рис. 3.35). Например, сужение ширины запрещенной зоны в аморфных полупроводниках при акустической деформации вызывает увеличение поглощения зондирующего излучения и соответственно уменьшение пропускания пленки. Экспе-  [c.163]


Электропроводность диэлектриков в отличие от полупроводников чаще всего носит не электронный, а ионный характер. Это связано с тем, что ширина запрещенной зоны в диэлектриках AW kT и лишь ничтожное количество электронов может отрываться от своих атомов за счет теплового движения. Ионы же часто оказываются слабо связанными в узлах решетки, и энергия W, необходимая для их срыва, сравнима с кТ, Например, в кристалле Na l = 6 эВ, а энергия  [c.123]

В теории X. 3. пользуются различными критериями сильного или слабого полей Н 1) тЯ 1 — критерий сильного поля в классич. области, означает, что величина 1/0, играющая роль <(В1>емени свободного пробега в поле Н, становится меньше характерного для системы времени релаксации г, так что поле Н начинает играть роль основного фактора рассеяния (под х, еслн оно зависит от й, следует понимать его значение нри й кТ в случае статпстикп Больцмана и ti = tip в случае распределения Ферми — Дирака) 2) hii > > кТ (в отсутствие вырождения) пли Яй > gp (при наличии вырождения) — критерий сильного поля в квантовом случае (hii сравнивается с энергией носителей) 3) если характерная анергия в ноле Н может стать сравнимой с шириной запрещенной зоны Дй полупроводника, то это дает соответствук -щий критерий сильного поля в виде Пй > Ag (обычные поля удовлетворяют обратному неравенству).  [c.380]

Изучение края поглощения для оптических переходов между валентной зоной и зоной проводимости является классическим методом определения величины запрещенной зоны в кристалли ческих полупроводниках. Лишь немногие жидкие полупровод ники исследовались этим методом. Среди них АзгЗез и близкие соединения [73], а также сплавы SexTei x [205]. На рис. 6.7 при ведены кривые поглощения для АзгЗез при нескольких темпера турах как выше, так и ниже температуры стеклообразования Для точного определения величины запрещенной зоны из изме рений зависимости оптического коэффициента поглощения а от частоты (О необходимо иметь адекватную теорию формы края по глощения. Такой теории для неупорядоченных материалов нет  [c.118]

Указанные выше желательные параметры нелинейных устройств в свою очередь накладывают определенные требования на материалы. Так, для переключения при ма,тых мощностях необходимо наличие у материалов сильных нелинейных свойств (больших Пг). Быстрый отклик и малые времена релаксации нелинейной среды позволили бы достичь коротких циклов переключения. Нелинейность должна существовать при комнатной температуре. Полупроводники и до некоторой степени органические и фоторефрактивные материалы удовлетворяют большинству этих требований. Однако материал, который удовлетворял бы одновременно всем этим требованиям, еще не найден. Электронные и оптические свойства полупроводников, используемых в нелинейных устройствах, можно изменить, если воспользоваться особыми свойствами электронов проводимости в полупроводниках, облучаемых квантами света с энергиями, близкими энергии ширины запрещенной зоны. В этом случае многие полупроводники, а в частности СаАз, пригодны для создания электронных, оптических или оптоэлектронных устройств. Полупроводники также вполне удовлетворяют требованиям, предъявляемым к нелинейным резонаторам Фабри — Перо. Они привлекают тем, что дают возможность получить соответствующий коэффициент поглощения (будучи умноженным на длину он составляет на очень  [c.56]

Интересна еще одна тенденция — рост эффективности дефектообразования и фотоадсорбционной активности с увеличением ширины запрещенной зоны исследуемых полупроводников. Энергия захватываемого носителя заряда возрастает с увеличением глубины залегания соответствующего ПЭС в запрещенной зоне. Обе отме-  [c.261]


Смотреть страницы где упоминается термин Запрещенная зона в полупроводниках : [c.444]    [c.449]    [c.411]    [c.576]    [c.176]    [c.112]    [c.117]    [c.317]    [c.126]    [c.128]    [c.106]   
Физика твердого тела Т.2 (0) -- [ c.185 ]



ПОИСК



Запрещенные

Зона запрещенная

Металлическая составляющая связи, ионная составляющая связи и ширина запрещенной зоны в полупроводниках

Полупроводники

Полупроводники запрещенная зона (эпергетнческая щель)

Фононы и запрещенная зона в полупроводниках



© 2025 Mash-xxl.info Реклама на сайте