Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генерация электронов в полупроводника

Гельмгольца свободная энергия См. Свободная энергия Генерация электронов в полупроводниках  [c.633]

Электронный механизм оптической генерации звука в полупроводниках на пути к генерации предельно коротких акустических импульсов. Экспериментальные и теоретические исследования [94—961 выявили ряд важных преимуществ, которые может дать использование полупроводниковых кристаллов для создания оптических генераторов пикосекундных акустических импульсов. С точки зрения оптической генерации акустических волн наиболее существенной особенностью полупроводников является наличие в них наряду с термоупругим дополнительного механизма деформации кристаллической решетки. Речь идет о так называемом электронном или концентрационно-деформационном механизме [94—97], который обусловлен изменением равновесной плотности полупроводников при оптической генерации неравновесных электронно-дырочных пар.  [c.166]


Полупроводниковые лазеры используют в качестве активных элементов неорганические вещества (кристаллы), обладающие свойствами полупроводников. В отличие от лазеров на примесных кристаллах генерация излучения в полупроводниках происходит не на переходах между уровнями примесных ионов, а на переходах между зоной проводимости и валентной зоной или между зонами и уровними, образуемыми примесями в запрещенной зоне, самого полупроводника. Таким образом, активным веществом является сама кристаллическая матрица, а примеси служат источником зарядов (электронов и дырок), рекомбинация которых приводит к возникновению фотонов.  [c.755]

Специального пояснения и обобщения, однако, требует понятие разности населенностей рабочих лазерных уровней в полупроводнике. Дело в том, чго в отличие от рассмотренных твердотельных лазеров на редкоземельных и переходных ионах (рубин, Ы(1 УАС и др.) и от атомарных и ионных газовых лазеров (Не - Не, аргоновый и др.) в полупроводниковых лазерах генерация происходит не между отдельными дискретными (хотя и уширенными) уровнями, а на целой совокупности переходов между зонами состояний электронов в полупроводнике (зона проводимости (с) и валентная зона (и) показаны на рис. 1.4).  [c.34]

Одновременно с процессом образования свободных носителей генерацией) идет процесс их исчезновения рекомбинации). Часть электронов возвращается из зоны проводимости в валентную зону и заполняет разорванные связи (дырки). При данной температуре за счет действия двух конкурирующих процессов генерации и рекомбинации в полупроводнике устанавливается некоторая равновесная концентрация носителей заряда. Так, например, при комнатной температуре концентрация свободных электронов и дырок составляет в кремнии примерно 10 ° см 3, в германии приблизительно Ю з см-з.  [c.242]

Воздействие света, электрического поля и других факторов может привести к появлению дополнительных, избыточных по отношению к равновесным, концентраций свободных носителей, их называют неравновесными носителями заряда. При неизменной интенсивности внешнего фактора в полупроводнике устанавливается стационарное состояние, при котором скорости генерации и рекомбинации носителей заряда равны. В этих условиях концентрации избыточных носителей заряда равны г п = п - пд к Ар — р - ро, где пир- постоянные концентрации электронов и дырок при наличии внешнего фактора пд а рд - то же, в отсутствие внешнего фактора, т. е. равновесные концентрации. Если в полупроводнике нет объемного заряда, то выполняется условие его электрической нейтральности  [c.64]


Понятие о неравновесных носителях. При температуре, отличной от абсолютного нуля, в полупроводнике происходит тепловое возбуждение генерация) свободных носителей заряда. Если бы этот процесс был единственным, то концентрация носителей непрерывно возрастала бы с течением времени. Однако вместе с процессом генерации возникает процесс рекомбинации электроны, перешедшие в зону проводимости или на акцепторные уровни, вновь возвращаются в валентную зону или на донорные уровни, что приводит к уменьшению концентрации свободных носителей заряда. Динамическое равновесие между этими процессами при любой температуре приводит к установлению равновесной концентрации носителей, описываемой формулами (6.7) и (6.8). Такие носители называются равновесными.  [c.171]

В полупроводниках электроны имеют свой особый энергетический спектр, на соответствующих переходах которого осуществляется генерация. Прежде всего рассмотрим основные положения теории полупроводников, основанной на так называемой зонной теории твердого тела.  [c.54]

ГЕНЕРАЦИЯ НОСИТЕЛЕЙ ЗАРЯДА в полупроводниках — появление электронов в зоне проводимости и дырок в валентной зоне. Г. в. з. происходит под действием теплового движения атомов кри-  [c.435]

Др. важная причина снижения кпд СЭ — неполное использование энергии поглощённых фотонов. При генерации электронно-дырочных пар фотонами с энергией, превышающей ширину запрещённой зоны полупроводника, избыточная энергия излучения теряется при переходах внутри зоны за счёт соударений носителей с атомами решётки и переходит в тепло. Эти потери уменьшаются с увеличением g.  [c.579]

Длительность возбуждаемых импульсов деформации может ограничиваться снизу не только величиной т , но и временем пробега звука по области тепловыделения, а характерный размер области нагрева решетки I определяется либо длиной поглощения света /п б 1, либо длиной теплопроводности — расстоянием, на которое прогреется кристалл за время оптического воздействия за счет переноса энергии электронами, фононами и т. д. Фононная теплопроводность всегда происходит со скоростями, не превышающими звуковую, и поэтому не приводит к уширению акустических импульсов. Движения электронов в металлах и электронно-дырочной плазмы в полупроводниках может существенно увеличить область нагрева решетки, особенно при низких температурах. При комнатных температурах диффузия носителей в значительной мере замедлена из-за сильного рассеяния на тепловых колебаниях решетки. Поэтому для термоупругой генерации сверхкоротких импульсов деформации необходимо одновременно уменьшать длительность лазерного воздействия и длину поглощения света. Наконец, нельзя забывать, что время нагрева решетки может определяться не временем оптического воздействия, а временем передачи энергии от электронов к фононам, что также препятствует укорочению длительности импульсов деформации.  [c.162]

Учет сложной структуры валентной зоны приводит к поляризационной зависимости межзонного поглощения в квантовых ямах. Рассмотрим межзонные переходы в гетероструктурах, выращенных на основе полупроводников с решеткой цинковой обманки в направлении [001]. Скорость генерации электронно-дырочных пар (вероятность рождения в единицу времени) для оптических переходов при к -ку = Ч определяется соотношениями  [c.93]

Рассмотрим полупроводник, в котором естественные процессы, происходящие при определенной температуре, достаточны для того, чтобы поддерживать заданную объемную плотность го свободных электронов в зоне проводимости (эта зона может принять гораздо большее число электронов). Данное значение плотности п при тепловом равновесии возникает в результате конкуренции двух противоположных процессов 1) генерации (со скоростью g) электронов проводимости путем возбуждения их из заполненных состояний с низкими энергиями и 2) рекомбинации (со скоростью г) свободных электронов путем обратного перехода в любое вакантное состояние с низкой энергией.  [c.404]


Генерация электронно-дырочных пар частицей, влетающей в обеднённый носителями слой вблизи контакта полупроводник — металл или вблизи Полупроводниковый детектор частиц  [c.569]

Следует обратить внимание на тот факт, что в электронном примесном полупроводнике концентрация неосновных носителей заряда — дырок даже меньше, чем г. собственном прн той же температуре. Это на первый взгляд непонятное явление можно объяснить следующим образом. В условиях теплового равповесия процессы тепловой генерации пар уравновешиваются процессами рекомбинации. В собственном полупроводнике скорость рекомбинации будет пропорциональна произведению концентраций заряда. Введение донорной примеси приводит к увеличению концентрации электронов в нем (/ >/г,), но не изменяет скорости рекомбинации, так как в условиях теплового равновесия скорость тепловой генерации остается постоянной при постоянной темпера-  [c.22]

После окончания освещения образца электроны переходят на более низкие энергетические уровни — примесные или в валентную зону. При непрерывном освещении полупроводника устанавливается динамическое равновесие между образующимися дополнительными (неравновесными) носителями и уходящими на нижние уровни, т. е. устанавливается динамическое равновесие между процессами генерации носителей заряда и рекомбинацией их.  [c.276]

Помимо основных, полупроводники содержат всегда и неосновные носители, появляющиеся в результате межзонной тепловой генерации донорный полупроводник — дырки, дырочный полупроводник — электроны. Концентрация их, как правило, значительно ниже концентрации основных носителей. Легко установить связь между ними. Для этого рассмотрим невырожденный полупроводник, например, донорного типа. Основными носителями в нем являются электроны. Их концентрация описывается формулой (6.7). Неосновными носителями являются дырки, концентрация которых определяется формулой (6.8). Умножая (6.7) на (6.8), получаем  [c.170]

На рис. 12.10, а показан диод, р-область которого освещается световым потоком мощностью Wq, вызывающим генерацию в этой области электронно-дырочных пар. Число таких пар G, ежесекундно появляющихся в р-области, определяется соотношением (12.13). Так как поглощение происходит в собственной области, то свет поглощается уже в узком слое у поверхности, от которой носители диффундируют совместно вглубь полупроводника. Если/ — -переход расположен на глубине w[c.327]

Метод намерения Д. д. состоит в генерации неравновесных носителей (обычно светом, путём проектирования ярко освещённой щели на поверхность образца) н их регистрации на нек-ром расстоянии г от. места генерации. Коллектором неравновесных частиц может служить электронно-дырочный переход или контакт металл-полупроводник. Изменяя г (расстояние между световой н елью и коллектором) и сигнал, снимаемый с коллектора, можно определить стационарное распределение концентраций неравновесных носителей. Зная зависимость концентрации от отношения r/L, определяют L.  [c.686]

Стимулированное излучение. Рассматривая процессы возбунаде-ния электронов в полупроводниках под действием света и свечение, которое возникает при излучательной рекомбинации электроннодырочных пар, мы оставили без внимания важный вопрос о влиянии самого излучения на переходы возбужденных электронов в нормальные состояния, на особенность излучения, возникающего в этих условиях при таких переходах, и возможность их практического использования для усиления и генерации электромагнитных колебаний.  [c.333]

Существенным недостатком Ф. на основе полупроводниковых гетероструктур и выпрямляющих контактов полупроводник— металл является больиюй темновой ток, связанный с тепловой генерацией электронов в уэкозонном полупроводнике. Этот ток может быть уменьшен охлаждением Ф.  [c.350]

В полупроводниковых лазерах, в отличие от лазеров на примесных кристаллах, активным веществом служит сама кристаллическая матрица полупроводника, а примеси лишь служат источником носителей заряда электронов в зоне проводимости и дырок в валентной зоне. При создании с помощью накачки избыточного (по сравнению с равновесным) числа электронов и дырок позможно возвращение к состоянию равновесия посредством оптического межзонного перехода — фоторекомбинации. Вероятность фоторекомбинации велика лишь для прямозонных полупроводников, таких, у которых максимум энергии.в валентной зоне и минимум энергии в зоне проводимости соответствуют одному и тому же значению квазиимпульса. По этой причине все полупроводники, на которых получена генерация, являются прямозонными. Перечислим важнейшие свойства полупроводниковых лазеров  [c.946]

Эффект Эттингсгаузена сопутствует эффекту Холла и состоит в том, что при пропускании тока через проводник, помещенный в поперечное магнитное поле (рис. 9.7), в направлении, перпендикулярном магнитному полю и току, возникает градиент температуры. Наибольшую величину этот эффект имеет в собственных полупроводниках. Как было показано в предыдущем параграфе, в таких полупроводниках электроны и дырки отклоняются магнитным полем в одну и ту же сторону (к грани С на рис. 9.7). Вследствие этого на одной грани образца концентрация электронов и дырок оказывается выше равновесной и там рекомбинация превалирует над тепловой генерацией носителей, а на другой грани (на грани D рис. 9,7), наоборот, концентрация носителей заряда ниже равновесной и там тепловая генерация преобладает над рекомбинацией. Вследствие этого тепло расходуется на генерацию электронно-дырочных пар в одной части образца и выделяется в результате их рекомбинации в другой части этого образца и в нем возникает разность температур Ti — (рис. 9.7).  [c.270]

КВАНТОВАЯ ЭЛЕКТРОНИКА — область физики, охватывающая исследования методов усиления, генерации и преобразования частоты эл.-магн. колебаний и волн (в широком диапазоне длин волн, включающем радио- и оптич. диапазоны), основанных на вынужденном излучении или нелинейном взаимодействии излучения с веществом. Осн. роль в К. э. играют вынужденное испускание и положит, обратная связь. В обычных условиях вещество способно лии1ь поглощать или спонтанно (самопроизвольно и хаотически) испускать фотоны в соответствии с Больцмана распределением частиц вещества по уровням энергии. Вынужденное испускание при этом не существенно. Оно начинает играть роль лигнь при отклонении ансамбля микрочастиц от распределения Больцмана. Такое отклонение может быть достигнуто воздействием эл.-магн. поля, электронным ударом, неравновесным охлаждением, инжекцией носителей заряда через по-тенц. барьер в полупроводниках и т. п. В результате таких воздействий (накачки) поглощение эл.-магн. волн веществом уменьшается и при выравнивании населённостей на. энергетич. уровнях, подвергающихся действию накачки, интенсивности поглощения и вынужденного испускания сравниваются и взаимно гасятся. При этом эл.-магн. волна, частота к-рой резонансна но отношению к частоте перехода между этими, энергетич. уровнями, распространяется в веществе без поглощения. Такое состояние наз. н а-сыщением перехода.  [c.319]


Необходимые условия реализуются в области р — п-перехода, обеднённой носителями, где р на неск. порядков выше, чем вне перехода. Обычно толщина области р — п-перехода IV, обеднённая носителями заряда,— чувствит. область П. д.— ма.та ( 10" см). Практич. значения такой р — -переход не представляет, т. к. пробеги Л заряж. частиц, как правило, существенно больше II в области р — п-перехода выделяется малая часть энергии частицы. Для увеличения W на р — п-иереход подают обратное смещение С1, к-рое увеличивает размер обеднённой области в соответствии с соот-ыошепием IV = Ьу рС/, где Ь — константа, характеризующая полупроводник. Так, для п-31 Ь = 0,5, для р-8 Ь = 0,3, для п-Се Ь — 1, для р-Се Ь — = 0,65. При этом через р — п-переход течёт темновой ток разл. происхождения за счёт тепловой генерации электронов и дырок /ген = ёхр (—где — ширина запрещённой зоны в полупроводнике ток диффузии /диф за счёт неравномерной концентрации носителей.  [c.48]

Для полупроводников величина У определяется рассеянием энергии фотоэлектронами при их движении к границе раздела. В случае слаболегированньгх полупроводников электронов проводимости мало и осн. механизмом рассеяния энергии фотоэлектронов является взаимодействие их с электронами валентной зоны (ударная ионизация) и с фононами. Скорость рассеяния энергии фотоэлектронами и глубина, из к-рой они могут выйти в вакуум (глубина выхода), зависят от величины X и от соотношения х и Если Х> в. то кинетич. энергия фотоэлектронов в полупроводнике превышает и фотоэлектроны могут рассеять свою энергию на ударную ионизацию (генерацию электронно-дырочных пар). В таком процессе фотоэлектроны рассеивают сразу значит, часть энергии и могут потерять возможность выйти в вакуум. В результате глубина выхода фотоэлектронов мала, а электрон/ фотон (рис. 2).  [c.365]

Термоупругая генерация волн деформации происходит при пространственно-неоднородном нагреве и остывании кристаллической решетки, причем уменьшение температуры тела Т определяется исключительно теплопроводностью. Генерация волн деформации за счет электронного механизма, согласно (3), происходит как при увеличении концентрации неравновесных носителей (при межзонном поглощении света), так и при уменьшении п . Однако, в отличие от температуры кристалла Т, концентрация носителей в плазме в силу (4) падает не только за счет ее пространственной диффузии, но и за счет рекомбинации электронно-дырочных пар. Важно, что время рекомбинации неравновесных носителей Тр суш,ественно зависит от их концентрации при двухчастичной рекомбинации, Тр Пе при Оже-реком-бинации). Поэтому, изменяя плотность энергии оптического воздействия и, следовательно, характерную концентрацию фотовозбужденных носителей, можно эффективно влиять на эволюцию плазмы после окончания светового воздействия и, тем самым, на процесс генерации волн деформации. Уменьшая время рекомбинации Тр, можно добиться выключения деформационного источника акустических волн за времена, не превосходящие длительность оптического воздействия т (при Тр т,,), и существенного уменьшения длины диффузии неравновесных носителей /д==К1)дТр. Оба эти обстоятельства приводят к сокращению длительности оптически возбужденных в полупроводниках импульсов деформации вплоть до [95, 96].  [c.167]

Как собственные, так и лримесные носители заряда в твердых диэлектриках возникают преимущественно из-за термической активации. При этом кроме процесса генерации электронов и дырок происходят процессы их рекомбинации, при которых электрон и дырка взаимно уничтожаются. В диэлектриках и полупроводниках между тепловой генерацией и рекомбинацией носителей устанавливается динамическое равновесие, зависящее от глубины залегания примесных уровней и от температуры. Поэтому носители заряда, образующиеся при термической активации, называют равновесными. Если носители возникают при освещении или облучении диэлектрика, а также в сильном электрическом поле, их называют неравновесными, так как после выключения активирующего фактора их концентрация резко падает.  [c.44]

Большую группу составляют полупроводниковые приборы, использующие фотоэлектрические явления в полупроводниках. К ним относятся вентильные фотоэлементы и фотодиоды — приборы, в которых использовано явление генерации э. д. с. в р—и-переходе под действпе.м света. Вентильные элементы используют в фотографии и кинематографии, для преобразования солнечной энергии в электрическую, а фотодиоды, в которых под действием света происходит резкое возрастание тока, применяют в схемах считывания информации с перфорированной ленты в электронно-счетных машинах.  [c.249]

Шумы в полупроводниках обычно также разделяют на тепловой, дробовой и фликкер-шум. Однако, учитывая своеобразие процессов, протекающих в полупроводниках, различают а) Г е п е -р а ц и о п н о - р е к о м б и н а ц и о н II ы й шум, создаваемый спонтанными Ф. скоростей генерации, рекомбинации, улавливания и т. д. носителей заряда (электронов и дырок), что приводит к Ф. плотности свободных носителей. Для полупроводниковых приборов, содержащих р—п-переходы (полупроводниковый диод, полупроводниковый триод), этот шум значительно ближе к дробовому, чем для полупроводниковых льатериалов (термисторы, фотосопротивления).  [c.322]

Однако более важными являются нетепловые применения лазера на углекислом газе. Среди этих возможных применений — оптическая связь как на Земле, так и в космосе. В этом случае для передачи через земную атмосферу наиболее привлекательны оптические окна , прозрачные для волн с длиной от 9 до 14 микрон. Высокая мощность и эффективность лазеров на углекислом газе с длиной волны 10,6 микрон делает их идеальными кандидатами для таких целей. Лазер на углекислом газе является идеальным для оптических радарных систем снова из-за малых потерь в атмосфере. Другая возможность — использование лазера на углекислом газе для исследования оптических взаимодействий с веществом на длине волны 10,6 микрона, так как многие полупроводники, непрозрачные для видимой части спектра, прозрачны для этой длины волны. Еще одно применение мощного лазера на углекислом газе — использование 10,6-микронного излучения в качестве насоса для изучения нелинейных свойств новых материалов, которые могли бы служить для создания действительно непрерывно настраиваемых источников инфракрасного излучения. В связи с этим мои коллеги и я провели ряд интересных экспериментов, которые включают в себя генерацию вторых гармоник, параметрическое усиление излучения в далекой инфракрасной области, двухфотонпое получение пары электрон — дырка в полупроводниках, изучение нелинейностей в полупроводниках, возникающих благодаря электронам проводимости, и рамановского рассеяния в полупроводниках на электронах с уровня Ландау. Некоторые из этих механизмов оказались достаточно сильны для того, чтобы позволить нам создать настраиваемый лазерный вибратор в инфракрасной части спектра. Такой настраиваемый лазер, накачиваемый лазером на углекислом газе с фиксированной частотой, может использоваться как вибратор в системе оптической связи или в радаре. Более того, такие инфракрасные настраиваемые источники полностью революционизируют инфракрасную спектроскопию. Описание этих экспериментов может быть предметом особой статьи. В заключение достаточно сказать, что лазеры на углекислом газе уже открыли дорогу физическим исследованиям, о которых нельзя было раньше и мечтать, и обещают в будущем много плодотворных экспериментов.  [c.73]

В этой главе изложены основы теории вынужденного излуче ния в полупроводниках и даны выражения для численного расчета плотности порогового тока. Много внимания уделено соотношениям между поглош ением, вынужденным излучением и спонтанным излучением. Показано, что необходимым условием вынужденного излучения является превышение энергетическим интервалом между квазиуровнями Ферми для электронов и дырок энергии испускаемых фотоновС Шя достижения порога генерации нужно, чтобы усиление превышало потери на внешнее излучение плюс потери внутри резонатору такие, как поглощение на свободных носителях и рассеяние )  [c.214]


АЭВ приводит к ряду нелинейных акустич. эффектов, к-рые особенно заметны в пьезополупроводниках к генерации акустич. гармоник и встречному вз-ствию УЗ волн, к-рое позволяет осуществлять свёртку, корреляцию и обращение во времени УЗ импульсов, что находит применение в устройствах акустоэлектроники. АЭВ объясняет эффект акустоэлектрического (фононного) эха и акустич. памяти . Неоднородное электрич. поле с частотой =0, возникающее прп встречном вз-ствии УЗ волн, приводит к перераспределению зарядов на примесных центрах, что позволяет записать и запомнить УЗ сигнал. Электрич. или УЗ импульс, приложенный к кристаллу, через нек-рое время считывает записанную информацию. Подобные эффекты для ПАВ наблюдаются в слоистых структурах пьезоэлектрик — ПП и находят применение в акустоэлектронике. фПустовойт в. и.. Взаимодействие электронных потоков с упругими волнами решетки, УФН , 1969, т. 97, в. 2, с. 257 Тру ЭЛ л р., ЭльбаумЧ., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972 Г у р е вичВ.Л., Теория акустических свойств пьезоэлектрических полупроводников, ФТП , 1968, т. 2, Ха 11, с. 1557 Гуляев Ю. В.,К нелинейной теории усиления ультразвука в полупроводниках, ФТТ , 1970, т. 12, Гв. 2, с. 415. В. Е. Лямов.  [c.18]

В гл. 1 был рассмотрен / -я-переход, в области объемного заряда которого не происходит ни генерации носителей заряда, ни их рекомбинации. Рекомбинационно-ге-нерационные процессы рассматривались только в базовой области вентиля. При этом предполагалось, что тепловая генерация носителей заряда происходит за счет непосредственного перехода электрона из валентных связей в свободное состояние, а рекомбинация — за счет возвращения электрона в валентные связи. Как уже говорилось, рекомбинационно-генерационные процессы могут осуществляться с помощью примесных атомов. Возбужденный электрон в таком случае переходит сначала из валентной связи на такой атом, а затем с этого атома в свободное состояние. Аналогичным образом происходит рекомбинация. Такие рекомбинационно-генерационные центры называются центрами захвата или ловушками . В кристалле полупроводника может быть несколько типов таких центров, соответствующих различным энергиям ионизации. Для упрощения рассмотрим идеализо-ванную модель р- -нерехода, в котором имеются центры захвата только одного типа, лежащие на одном энергетическом уровне. Такие центры могут захватывать электроны из валентных связей, что приводит к появлению дырки, и отдавать обратно захваченные электроны, что приводит к исчезновению дырки. Захваченные электроны могут переходить в свободное состояние, что приводит к появлению свободного электрона, и свободные электроны могут возвращаться в центр захвата, т. е. происходит исчезновение свободного электрона. В базовой области вентиля, где нет электрического поля, все четыре процесса находятся в состоянии термодинамического равновесия. Количество электронов и дырок в свободном со-  [c.47]

Атомы в кристаллической решетке кремния и ряда других полупроводников связаны друг с другом за счет обменных сил, возникающих в результате попарного объединения валентных электронов соседних атомов, при этом каждый из атомов остается электрически нейтральным. Такая связь называется ковалентной. Повышение температуры вызывает колебательное движение атомов кристаллической решетки. В результате ковалентные связи между атомами могут разрываться, что приводит к образованию пары носителей заряда свободного электрона и незаполненной связи - дырки - вблизи того атома, от которого оторвался электрон. Процесс образования электронно-дырочнь1х пар называется генерацией носителей заряда Если этот процесс происходит под воздейст-вие.м теплоты, то его называют термогенерацией.  [c.49]

Наилучшими параметрами обладает Г. па основе трёхслойной (двойной) гетероструктуры (ДГС) с активным слоем из узкозонного полупроводника, заключённым между 2 широкозонными (ДГС-лазеры, рис. 1, в). Двустороннее оптическое и электронное ограничение приводит к совпадению области инверсной населённости и светового поля, что позволяет получить генерацию при малом токе накачки. Использование для инжек-ции носителей гетероперехода позволяет осуществить сверхинжекцию для достижения достаточно большой инверсии населённости в активном слое.  [c.445]

При классификации Д. т. по фи 1. принципу выделяют туннельные диодм, в к-рых толп ина обеднённого-слоя столь мала (- 100 А), что энергетич. барьер между р- и п-областями оказывается прозрачным для туннелирования. электронов из валентной зоны в зону проводимости и обратно. Они изготавливаются из высоко-легпров. (вырожденных) полупроводников. Суперпозиция туннельного и обыч юго зонного механизмов, проводимости обусловливает Л -образную вольт-ам-перную характеристику (В АХ) с участком отрм1 атель-ного дифференциального сопротивления. -Чта особенность ВАХ и определяет гл. область применения туннельных диодов — генерацию СВЧ-излучения небольшой мощности.  [c.628]

МЕЖЗОННЫЕ ПЕРЕХОДЫ — переходы электронов из валентной зоны полупроводника в зону проводимости, сопровождающиеся образованием (генерацией) пары носителей заряда электрон проводимости — дырка обратные М. п. наз. рекомбинацией носителей заряда. Генерационные М. п. могут быть обусловлены тепловым возбуждением, воздействием эл,-магЕ. волн и т. д. Рекомбинационные М. п. могут быть спонтанными и вынужденными (см. Лолу проводники. Рекомбинация носителей заряда), МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ. По природе, характерным внергиям и расстояниял близко к межатомному взаимодействию. Описывается теми же типами потенциалов взаимодействия, что и межатомное взаимодействие. М. в. наиб, существенно в нлот-  [c.88]


Смотреть страницы где упоминается термин Генерация электронов в полупроводника : [c.238]    [c.690]    [c.356]    [c.172]    [c.435]    [c.513]    [c.526]    [c.636]    [c.266]    [c.81]    [c.296]    [c.259]   
Задачи по термодинамике и статистической физике (1974) -- [ c.2 , c.16 ]



ПОИСК



Генерация

Полупроводники

Электронно-дырочные пары, генерация и рекомбинация в полупроводнике

Электронные полупроводники

Электронный механизм оптической генерации звука в полупроводниках на пути к генерации предельно коротких акустических импульсов

Электроны в полупроводнике



© 2025 Mash-xxl.info Реклама на сайте