Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Валентные структуры

В результате перестройки валентных структур адсорбированных молекул и поверхности возникают различные условия для образования поверхностных связей. В случае кислорода возможно образование полярных и ковалентных связей. Для первой в качестве переходной формы вероятно существование на металле кислородного молекулярного иона 0 . Например, исходя из  [c.37]

Валентные силы индивидуальных атомов строго направлены в пространстве, и угол между двумя ковалентными связями атома является прежде всего свойством атома общая молекулярная структура только незначительно влияет на него. Обобщенные данные по длинам и углам связей суммированы в табл. 6.  [c.137]


На рис. 79 была показана структура химического соединения трех металлов меди, марганца, олова. Вероятнее всего предположить, что в этом соединении существуют преимущественно металлические связи. Каждый из перечисленных металлов отдает валентные электроны в общий фонд, и тогда частичная замена одного металла другим (например, марганца медью, если содержание меди в сплаве превосходит стехиометрическое соотношение) возможна. Таким образом получаются твердые растворы на базе решетки химического соединения с избытком одного из компонентов. Пределы растворимости могут быть очень широкими в зависимости от того, насколько близка природа элементов, входящих в химическое соединение.  [c.104]

А. Н. Мень и А. Н. Орлов оценивали энергию связи ионов в октаэдрических (о) и тетраэдрических (т) узлах в шпинельных окислах переходных металлов. Какой узел займет ион в решетке окисла, определяется знаком разности соответствующих энергий связи А = — Ug (рис. 68). Для образования окисла со структурой шпинели состава . где ионы основного металла Mt могут иметь валентность 2 и 3, а примеси Me (концентрации с)—только двухвалентные ионы, сформулированы следующие положения  [c.103]

Неограниченная растворимость возможна, если при любой концентрации растворяемого компонента происходит замещение атомов основного компонента-растворителя. Это может быть, если оба компонента имеют идентичную кристаллическую структуру, т. е. являются изоморфными, а также когда атомные размеры незначительно отличны или же компоненты близки по электронному строению валентных оболочек.  [c.31]

При систематизации структур неорганических соединений очень часто пользуются понятием координационных сфер. Суть координационной сферы состоит в том, что с ее помощью определяются валентные расстояния.  [c.72]

При взаимодействии атомов одного сорта с атомами другого сорта характер химической связи определяется их способностью захватывать или отдавать валентный электрон. Эта способность характеризуется так называемой электроотрицательностью атомов X. По существу, электроотрицательность — это параметр, выражающий тенденцию атома притягивать к себе электроны в конкретном твердом теле. Электроотрицательность — относительная мера взаимодействия атомов, она не является строго физической величиной, поскольку она не постоянна и зависит от природы другого атома, с которым химически связан данный атом. Один и тот же атом в химической связи иногда одновременно может выступать и как электроположительный, и как электроотрицательный. Электроотрицательность очень слабо зависит от типа связи и от конкретных особенностей кристаллической структуры, что делает ее некоторым объективным параметром атомов, который полезен при обсуждении свойств твердых тел.  [c.57]


Рис, 2.7. Схематическое изображение связей в структуре алмаза (а) и в молекуле водорода На (б). Каждый атом углерода отдает на связь четыре валентных электрона. В молекуле водорода каждый атом водорода отдает на связь по одному электрону и связь оказывается локализованной  [c.76]

Так, например, структура типа алмаза у элементов IV группы, имеющих четыре внешних валентных электрона s p (алмаз Si,Ge, a-Sn), возникает вследствие перехода одного s-электрона в р-состояние (рис. 2.10).  [c.81]

Взаимодействие положительных атомных остатков друг с другом не сводится только к их взаимному отталкиванию, а заключается также в перекрытии их внешних электронных оболочек, ведущем к образованию валентных связей. Именно это-то перекрытие и позволяет объяснить образование того или иного типа кристаллических структур.  [c.82]

Собственное поглощение. Оно связано с переходами электронов из валентной зоны в зону проводимости. Выше уже отмечалось, что в идеальном полупроводнике при 7 = 0К валентная зона заполнена электронами полностью, так что переходы электронов под действием возбуждения в состояние с большей энергией в этой же зоне невозможны. Единственно возможным процессом здесь является поглощение фотона с энергией, достаточной для переброса электронов через запрещенную зону. В результате этого в зоне проводимости появляется свободный электрон, а в валентной зоне—дырка. Если к кристаллу приложить электрическое поле, то образовавшиеся в результате поглощения света свободные носители заряда приходят в движение, т. е. возникает фотопроводимость. Таким образом, для фотонов с энергией hvдлин волн (т. е. больших hv) имеет место сплошной спектр интенсивного поглощения, ограниченный более или менее крутым краем поглощения при hvинфракрасной области спектра. В зависимости от структуры энергетических зон межзонное поглощение может быть связано с прямыми или непрямыми оптическими переходами.  [c.307]

Рис, 9.5. Структур. валентных подзон и внутризонные переходы  [c.311]

Разработанные в 1950 г. термодинамические направления О.А. Есиным и П.В. Гельдом, возникающие в жидких расплавах, характеризуют действием ионной теории металлов и расплавов. Их взаимосвязь определяется тепловой энергией АН и состоянием валентных электронов. Высшая валентность у элементов IV - VI периодов нарастают с 4 для хрома до 6 для вольфрама. Электронное строение и кристаллические структуры тугоплавких металлов приведены в табл. 106. Максимальные значения термодинамических показателей (Г,ц,, ДЯ, S, d) имеют тугоплавкие металлы VI группы (Сг, Мо, W).  [c.414]

Вид энергетических зон при рассмотренных выше условиях показан на рис. 33. Энергия изображена как функция кх, однако эта зависимость сохраняется и для любого другого направления в кристалле. Если верхняя зона представляет собой зону проводимости, а нижняя <—валентную, то получается наиболее простая зонная структура полупроводника. На рисунке показана и ширина запрещенной зоны АЕ, которая отмечена как энергетический зазор между максимумом валентной зоны и минимумом зоны проводимости.  [c.88]

Концепция резонанса была также использована Полингом [30] для объяснения стабильности молекул с нечетным числом электронов, даже если, согласно элементарной теории, для них следовало бы ожидать образования стабильных димеров. В качестве наиболее яркого примера можно привести молекулу N0, которая, если исходить из валентной структуры  [c.382]

Для более полного описания основного состояния молекулы бензола необходимо также рассмотреть и другие структуры, отличные от структур Кекуле. Можно показать (Эйринг, Уолтер и Кимбалл [13]), что все возможные валентные структуры метода валентных связей для молекулы бензола могут быть сведены к двум структурам Кекуле и трем структурам Дьюара. Структуры Дьюара имеют вид  [c.384]

В теории валентных связей сверхсопряжение объясняется резонансом нормальной валентной структуры с ионными структурами и аномальными валентными структурами с одной очень длинной связью, например для  [c.417]


Сложные структуры, аналогичные структурам мышьяка, сурьмы и висмута Слбжная валентная структура Слегка испорченная куб. гр. центр, решётка  [c.86]

Многие элементы с неполностью заостренными внутренними электронными й- и /-подоболочйами обладают типичными металлическими структурами типа К8, К12 или Г12. Наличие решетки типа К8 у этих элементов объясняется тем, что после отделения всех валентных электронов внешней у ионов оказывается р -подоболочка с шестью электронами, образующими взаимодействующие эллиптические электронные облака . Решетка типа К12 является плотнейшей упаковкой. Для этой решетки удвоенное расстояние между двумя наиболее плот-ноупакованными октаэдрическими плоскостями, деленное на кратчайшее расстояние между соседними атомами в этой же плоскости <1, тождественно отношению параметров идеальной решетки типа Г12 при с/а= 1,6333. Несферичные ионы не дают плотнейшей решетки типа К12, хотя образуют плотнейшую решетку типа Г12.  [c.11]

Металлические связи образуют структуры путем взаимодействия положительных ионов решетки (атомных остатков) и делока-лизированных, обобществленных электронов. Эти связи являются гомеополярными. Они по существу не относятся к химическим, и понятие металлические связи можно считать качественным, так как металлы не имеют молекулярного строения, а их атомы соединяются в кристаллические образования. Этот вид связи и обусловливает высокую прочность, пластичность и электропроводность металлов. Энергия связи — около Ю Дж/моль. Прочная металлическая связь наблюдается при образовании интер-металлидов и некоторых твердых растворов. Одна из ее особенностей — отсутствие насыщения, определяемого валентностью соответствующих атомов.  [c.10]

Нами рассматриваются неметаллические материалы, имеющие температуру плавления более 1600°С. Эти материалы представляют софй согласно [31] кристаллические структуры, которые Можно представить в виде множества структурных единиц причем взаимодействие внутри такой единицы значительно сильнее, чем между ними. Поэтому сложные соединения, состоящие из нескольких сортов атомов, разбивают на структурные ком плексы и рассматривают взаимодействие внутри полу ченных комплексов, причем структурная группа должна быть симметричной. Последнее требование хорощо со гласуется с опытами по исследованию инфракрасньп спектров поглощения при частотах до 1000 см [32] Действительно, колебания симметричных комплексов цо добны колебаниям молекулы идеального газа такой же симметрии. Следовательно, симметричный комплекс мож но рассматривать как молекулу, состоящую из двух разных или одинаковых ядер, связь в которой осуществляется исключительно за счет взаимодействия валентных электронов обоих атомов.  [c.51]

Таким образом, все многообразие существующих неметаллических неорганических соединений можно представить в виде классов материалов, выделив их в зависимости от валентности атомов, входящих в химическую формулу вещества, и учгтывая при этом симметрию структур. Кроме того, при составлении группы должны рассматриваться физико-химические характеристики материалов, определяющие свойства требуемых покрытий.  [c.73]

Окислы металлов с переменной валентностью и двойные окислы. В третьей группе материалов, состоящей из окислов металлов с переменной валентностью, будем рассматривать только те модификации соединений, которые имеют кубическую кристаллическую решетку. Такого типа соединения относят к структурам, в которых узлы плотной кубической упаковки занимают атомы кислорода, а междууз-лия заполняются атомами металла (рис. 3-4). Подобные структуры имеют также соединения с комплексными ионами типа шпинелей, поэтому третий и четвертый классы могут быть подвергнуты совместному рассмотрению.  [c.81]

Если поверхностная структура не периодична, то следует применить для разбора задачи метод Рэлея. Картина получится более сложной. В частности, если структура состоит из частиц, близких по размерам и форме, но всевозможно ориентированных (запыленная пластинка, морозные узоры на стекле), то такая структура экви-валентн-а совокупности простых решеток всех возможных ориентировок, а соответствующая дифракционная картина представится в виде ряда концентрических кругов. Явление легко наблюдать, рассматривая небольшой яркий источник света сквозь такую пластинку.  [c.227]

Перед инертными газами располагаются галогены (элементы VII группы периодической системы со значением первого ионизационного потенциала от 10 до 18 эВ) —F, С1, Вг, J, у которых не хватает одного электрона для образования устойчивых электронных оболочек ближайших к ним атомов инертных газов, поэтому они легко присоединяют к себе электрон, образуя соответствующие отрицательные ионы — анионы F , С1 , Вг- J-. Энергию Э, освобождаюш,уюся при присоединении электрона к нейтральному невозбужденному атому с образованием аниона, называют энергией сродства атома к электрону. Наибольшим сродством к электрону обладают атомы галоидов F — 3,4 эВ, С1 — 3,6 эВ, Вг — 3,4 эВ, J — 3,1 эВ. С понятиями потенциала ионизации и энергии сродства к электрону тесно связана ионная валентность, определяемая как число электронов, которое может терять или приобретать атом. Щелочные металлы положительно одновалентны, поскольку они содержат на один электрон больше, чем атомы соответствующих ближайших инертных элементов, например ионная валентность атома Na равна -f 1. Атомы галоидов отрицательно одновалентны, у них не хватает одного электрона для образования устойчивой оболочки ближайших атомов инертных газов. Так, для атома С1 ионная валентность равна —1. Аналогично атомы II группы, теряя два электрона, могут также образовывать ионы с электронной структурой ближайших атомов инертных газов Be +, Mg-+, Са2+, Sf2+, и, следовательно, эти атомы обладают положительной валентностью, равной +2 атомы III группы, теряя три электрона, могут образовывать ионы с валентностью +3 и т. д.  [c.57]


Допустим, что валентная зона заполнена электронами полностью, но она перекрывается со следующей разрешенной зоной, не занятой электронами. Если к такому кристаллу приложить внешнее электрическое поле, то электроны начнут переходить на уровни свободной зоны и возникнет ток. Данный кристалл также является металлом. Типичный пример металла с указанной зонной структурой магний. У каждого атома Mg ls 2s22p 3s2) в валентной оболочке имеется два электрона. В кристаллическом магнии валентные электроны полностью заполняют Зх-зону. Однако эта зона перекрывается со следующей разрешенной зоной, образованной из Зр-уровней.  [c.230]

Ме- талл Внешние остовные и валентные электрюны Кристал- лическая структура Термодинамические показатели Параметры peujeTKH  [c.413]

Близость электронного строения (валентные электроны, параметры решетки и атомный радиус) основных элементов (Ni, Сг), определяющая идентичность ОЦК структур, способствует образованию широких и непрерывных областей ОЦК твердых растворов между тугоплавкими металлами 5-го периода - Nb, Мо и 6-го периода Та, W и создают широкие возможности твердорастворенного упрочнения жаропрочного сплава путем взаимного легирования. Введение в сплав с ОЦК структурой небольшого количества рения, равного 3,5 - 4,5% (по массе) с гексагональной структурой, при растворении в ОЦК металлах - Nb, Та, Сг, Мо, W передаст в коллективизированное состояние все валентные электроны, сильно упрочняет межатомные связи и повышает жаропрочность сплава. Таким о )разом, сплав приобретает рениевый эффект , т.е. повышаются пластичность и жаропрочность при высоких температурах.  [c.430]

Вниду описанных трудностей нелегко дать количественное объяснение наблюдавшихся аномалий. Паркинсон и др. предположили, что, поскольку четыре элемента имеют очень похожую кристаллическую структуру и электронную конфигурацию, их решеточная теплоемкость должна быть примерно одинаковой. Поскольку лантан совсем не имеет 4/-электронов, а количество 4/-электронов у церия, празеодима и неодима равно соответственно 1,2 и 3, Паркинсон и др. объясняют разницу между теплоемкостями лантана п остальных трех элементов исключительно вкладом 4/-электронов. Так как эти электроны расположены довольно глубоко в оболочке атома (валентными у всех четырех элементов являются б5-электроны), то волновые функции 4/-электронов соседних атомов не могут сильно перекрыться и образовать соответствующую 4/-зону. Однако вырождение электронных уровней может быть снято кристаллическими полями. Переходы между образовавшимися при этом уровнями и могут обусловливать избыток теплоемкости празеодима, неодима и церия по сравнению с лантаном.  [c.343]

Связь между большой электронной теплоемкостью и структурой d-обо-лочек переходных металлов была впервые замечена Моттом [168]. Можно ожидать, что функция gaQ, а следовательно, и электронная теплоемкость будут иметь здесь большую величину. Действительно, волновые функции d-электронов отличны от нуля на значительно меньшем расстоянии от центра атома, чем волновые функции валентных s-электронов. Следовательно, перекрытие волновых функций соседних атомов будет незначительным и с -зона будет уже, чем s-зопа. Далее, d-оболочка должна вмеш ать по 10 электронов на атом, тогда как s-оболочка—только 2. Поэтому, если допустить, что в металлах переходных груин d- и s-зоны валентных электронов перекрываются  [c.358]


Смотреть страницы где упоминается термин Валентные структуры : [c.32]    [c.408]    [c.416]    [c.735]    [c.23]    [c.24]    [c.24]    [c.26]    [c.28]    [c.194]    [c.195]    [c.116]    [c.191]    [c.10]    [c.73]    [c.108]    [c.230]    [c.308]    [c.295]    [c.26]    [c.163]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.417 ]



ПОИСК



Валентность

Валентные кристаллы Зонная структура алмаза

Валентных валентность

Инертные газы. Валентность. Метод валентных связей Структура молекул

Метод молекулярных орбиталей. Представление структуры методом валентных связей. Направленные валентности атоГибридизация. Кратные связи между атомами Колебательные и вращательные спектры молекул

Структура краев зоны проводимости и валентной зоны некоторых полупроводников



© 2025 Mash-xxl.info Реклама на сайте