Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Квантовая граница

Рис. 2, Спектральное распределение интенсивности I, тормозного излучения рентгеновской трубки по длинам волн X Хо — квантовая граница спектра, Хт — длина волны излучения при максимальной интенсивности, Хк — квантовая граница возбуждения Д-серии атома анода. Рис. 2, <a href="/info/251134">Спектральное распределение</a> интенсивности I, <a href="/info/4167">тормозного излучения рентгеновской</a> трубки по <a href="/info/12500">длинам волн</a> X Хо — квантовая граница спектра, Хт — <a href="/info/251052">длина волны излучения</a> при максимальной интенсивности, Хк — квантовая граница возбуждения Д-серии атома анода.

Корреляция фаз. Локальная неустойчивость. Квантовая граница. Диффузия  [c.183]

Для практической термометрии интерес представляют переходные металлы, имеющие частично заполненные -уровни, а также з-уровни (символы з и соответствуют значениям орбитального квантового числа О и 2 см. [6]). Поскольку -электроны более локализованы, чем з-электроны, проводимость обусловлена главным образом последними. Однако вероятность рассеяния 3-электронов в -зону велика, поскольку плотность -состояний вблизи уровня Ферми высока (рис. 5.5), поэтому удельное сопротивление переходных металлов выще, чем у непереходных. Наличие -зоны влияет также на характер температурной зависимости. При высоких температурах величина кТ может быть уже не пренебрежимо мала по сравнению с расстоянием от уровня Ферми до верхней или нижней границы -зоны. Предположение, что поверхность Ферми четко разделяет занятые и незанятые состояния, перестает быть верным, и для параболической -зоны в формулу удельного сопротивления вводится поправочный коэффициент (1—5Р), где В — постоянная. Однако плотность состояний в -зоне вовсе не является гладкой функцией энергии (рис. 5.5), поэтому эффект будет осложнен изменением плотности состояний в пределах кТ от уровня Ферми. Отклонение температурной зависимости от линейной может быть как положительным, так и отрицательным.  [c.194]

ГРАНИЦЫ ПРИМЕНИМОСТИ ВОЛНОВОЙ ТЕОРИИ СВЕТА И ЭЛЕМЕНТЫ КВАНТОВОЙ ОПТИКИ  [c.399]

Значит, при малых частотах (точнее, при выполнении условия hv << кТ) квантовая формула Планка переходит в классическую формулу Рэлея—Джинса. Следовательно, условие малости кванта энергии hv по сравнению с величиной кТ определяет границы применимости классической теории. Если нельзя считать hv кТ, то использование формулы Рэлея—Джинса незаконно и для описания свойств теплового излучения нужно применять формулу Планка.  [c.425]

Заканчивая это предельно краткое изучение свойств фотона, целесообразно сформулировать следующие общие соображения. Введение понятия фотона привело фактически к созданию новой корпускулярной теории света, хорошо объясняющей некоторые оптические явления, истолкование которых в рамках волновой теории было затруднительно, а иногда невозможно. В то же время при правильном описании явлений эта теория не приводит к противоречию с исходными положениями волновой оптики. В частности, можно описать явления на границе двух сред в терминах как волновой, так и корпускулярной оптики. Конечно, было бы грубой ошибкой отождествлять скорость электромагнитных волн и скорость корпускул и пытаться поставить какой-либо решающий опыт, позволяющий выбрать одну из двух дополняющих одна другую теорий для описания всех сложных оптических явлений. Следует учитывать, что волновая и корпускулярная картины — это классические крайности (пределы) квантово-ме-ханической сущности явления, полностью соответствующей дуализму материи.  [c.452]


Пусть границы энергетических зон в к-пространстве соответствуют рис. 9.2,а. В этом случае переходы электронов через запрещенную зону происходят прежде всего между энергетическими состояниями, соответствующими экстремумам разрешенных зон, т. е. при значениях волнового вектора к или квазиимпульса Р, близких к нулю. Для переходов должно выполняться квантово-механи-ческое правило отбора  [c.308]

Важное значение имеет спектральная характеристика фотокатода, т. е. зависимость спектральной чувствительности у от длины световой волны Я. Экспериментальные спектральные характеристики для некоторых чистых металлов приведены на рис. 26.7. Из рисунка видно, что, начиная с красной границы, с уменьшением л происходит возрастание чувствительности фотокатода. У металлов щелочной группы и их сплавов, а также у сложных фотокатодов (например, сурьмяно-цезиевого и кислородно-цезиевого), для которых красная граница лежит далеко в видимой и даже в инфракрасной областях и которые, следовательно, чувствительны к широкому интервалу длин волн, спектральная характеристика имеет другой вид. На ней обнаруживается резкий максимум в определенной области спектра (рис. 26.8). Такой фотоэффект называется селективным, или избирательным. Полное объяснение этого явления дается современной квантовой теорией.  [c.162]

Если энергия фотона меньше значения, соответствующего красной границе фотоэффекта соо, квантовый выход V равен нулю (эфс ект не наблюдается). Когда энергия фотона становится больше указанного значения, возникает фотоэффект при этом квантовый выход быстро возрастает по мере увеличения tm. При некотором значении энергии фотона fib) величина F проходит через максимум и начинает за-  [c.161]

Энергия Ферми. В основном состоянии твердое тело должно обладать минимальной энергией. Поскольку электроны подчиняются принципу Паули и в каждом квантовом состоянии может находиться не более одного электрона, заключаем, что при температуре О К должны быть заполнены без промежутков все квантовые состояния электронов начиная от уровня с наименьшей энергией. Из-за конечного числа электронов имеется конечный (верхний) заполненный уровень с наибольшей энергией, а последующие более высокие уровни свободны. Следовательно, при О К существует резкая граница между областью заполненных уровней и областью свободных уровней.  [c.344]

Ответ Бора оставляет открытым вопрос О границе между микроскопической квантовой системой и макроскопической классической системой,  [c.407]

Граница между квантовым и классическим объектами определяется характером законов, управляющих их движением. Если доминирующая роль принадлежит квантовым законам, то объект квантовый, а если классическим - объект классический. Следовательно, граница между объектами размыта, так же как и при геометрическом разграничении объектов, но размытость границы обусловливается не геометрическими, а физическими факторами и особенностями моделей, которыми описываются квантовые и классические объекты. Таким образом,  [c.408]

Применение оптических квантовых генераторов (лазеров) позволяет существенно расширить границы традиционных оптических методов контроля и создать принципиально новые методы оптического неразрушающего контроля, например, голографические, акустооптические и др. Лазерная дефектоскопия базируется на использовании основных свойств лазерного излучения — монохроматичности, когерентности и направленности.  [c.51]

В гл. 6 рассматриваются более подробно вопросы использования солнечной энергии для получения теплоты. В данной главе остановимся только на системах, предназначенных для преобразования солнечной энергии в электрическую. Начнем поэтому с рассмотрения тех характеристик, которые являются наиболее важными при этих процессах, прежде всего— спектр солнечного излучения. На рис. 5.6 показано, как распределена по длинам волн энергия солнечного излучения, падающего в единицу времени на единицу поверхности и приходящегося на единичный интервал длин волн. Спектр, измеренный на верхней границе земной атмосферы, очень хорошо совпадает со спектром излучения абсолютно черного тела при температуре 6000 К. Абсолютно черным телом называется физическое тело, которое излучает энергию во всем спектре и поглощает все падающее на него излучение независимо от длин волн. Таких тел в природе не существует, но существуют тела с очень близкими свойствами. Понятие абсолютно черного тела играет важную роль в физике. Так, решая задачу о распределении излучения абсолютно черного тела по длинам волн, Макс Планк впервые сформулировал принципы квантовой механики. В распределении солнечного излучения по длинам волн, измеренном вблизи поверхности Земли, имеются большие провалы, обусловленные поглощением излучения на отдельных частотах или в отдельных интервалах частот атмосферными газами — кислородом, озоном, двуокисью углерода — и парами воды.  [c.95]


Ньютонова динамика может быть также успешно применена в кинетической теории газов и в небесной механике (однако, с учетом сказанного ниже). Промахи в предсказании явлений появляются когда 1) относительные скорости (и) уже не являются малыми по сравнению со скоростью света (с) или 2) когда в рассмотрение вводятся массы атомных масштабов. Так как в лабораторных условиях высокие скорости могут быть достигнуты только для очень легких частиц, то эти два условия практически совпадают. Однако мы можем разделить их для целей анализа. Действительно, они представляют 1) границу, где ньютонова динамика должна быть заменена релятивистской динамикой, и 2) границу, где классическая динамика должна быть заменена квантовой динамикой.  [c.12]

В Д. п., помеш ённых в эл.-магн. поле достаточно малой частоты, ток может течь только параллельно границе раздела. На свойства Д- п. при низких темп-рах влияют электрон-электронное взаимодействие, эффекты локализации в неоднородном поло, обязанном своим существованием примесям и др. дефектам, квантовые интерференц. эффекты, а также магн. поле (см. Квантовые осцилляции).  [c.565]

Тормозной рентгеновский спектр. Тормозное излуче ние рентг. трубки возникает при рассеянии электронов на злектростатич. поле атома. Потеря энергии алей трона на излучение при атом носит квантовый характер и сопровождается испусканием фотона с анергией Йм, к-рая не может превосходить кинетич энергию / элен трона Ай) 1 . Частота Шд, соответствующая равенству Асод = if, наз. квантовой границей тормозного спектра. Длина волны Яд = 2лс/(Од (также называемая границей тормозного спектра) зависит от напряжения V на рентг. трубке  [c.362]

Спектр поглощения получают, пропуская тормозное излучение рентг. трубки или синхротронное излучение через тонкий поглотитель. При энергиях фотонов Ай) > к(< к — энергия ионизации /-уровня атомов поглотителя) из атома в результате фотоэффекта могут быть вырваны электроны с любого из уровней энергии атома, т, е. в процессе поглощения участвуют электроны всех оболочек атома. При < Аы < электроны Я-оболочки не вырываются излучением я в процессе поглощения утчаствуют лишь электроны всех остальных оболочек, начиная с -оболочки. Поэтому при Аш = наблюдается скачок поглощения В этой точке спектра поглощение резко уменьшается и интенсивность рентг, излучения, прошедшего через Поглотитель, Скачком возрастает. Скачок поглощения изменяется с ат. номером 2 элементов от 35 для самых лёгких элементов до 5 для самых тяжёлых. Аналогичные скачки поглощения наблюдаются и при переходе через энергии д остальных 5-уровней атома. Поскольку каждой энергии д соответствует свой скачок поглощения, эти энергии наз. краями поглощения 5-уроввей. Каждый край поглощения определяет вместе с тем и квантовую границу возбуж-  [c.362]

Характеристич. Р. и. рентг. трубки не поляризовано,, тормозное — частично поляризовано, причём вблизи квантовой границы его спектра коэф. поляризации приближается к 1()0%. При дифракции характеристич. Р. и. в кристалле возникает поляризация, зависящая от угла Брэгга 6 и приближающаяся к 100% при д = = 45 , т. е. когда угол между падающим и дифрагированным лучами равен 90°.  [c.376]

Вывод -отображения. Классичемшй предел. Квантовые поправки и -формы. Экспоненциальная расходимость квантовых поправок. Квантовая граница стохастичности. Область квазиклассичности и условие ее существования  [c.171]

Квазиклассичности условия 171, 177 Квазилинейное уравнение 99, 116, 120, 122 Квазимоды 235 Квантовая граница 186 Квантовое кинетическое уравнение  [c.270]

Многочисленные попытки найти в1.1ход из этого тупика не приводили к успеху вплоть до начала XX в., когда М.Планк сформулировал гипотезу дискретных квантов энергии, последовательное развитие которой многими физиками (в первую очередь А.Эйнштейном и Н.Бором) в дальнейшем привело к определению границ применимости классической теории и созданию новой квантовой физики, громадное значение которой для развития всех естественных наук общеизвестно.  [c.423]

Подход, основанный на аналогии с френелевским отражением, поучителен вот в каком отношении. Напомним, что отражение от границы раздела двух сред возникает вследствие различия как показателей преломления, так и коэффициентов поглощения (усиления). В частности, отражение от металлов объясняется, главным образом, второй причиной. Из сказанного легко сделать вывод, что самоотражение в активное среде лазера может обусловливаться модуляцией и показателя преломления, и коэффициента усиления. Как показывают более детальные исследования вопроса, самоотражение играет существенную роль в оптических квантовых генераторах.  [c.828]

Введение в определение важнейшего физического понятия столь расплывчатого термина, как ее современные теории , вряд ли можно признать правильным. XX век подарил нам множество современных теорий — общая и специальная теории относительности, квантовая механика, атомная и ядерная физика, физика элементарных частиц и т.д. Значительно расширились границы наблюдаемой части Вселегшой , что связано с громадными достижениями техники физического эксперимента. Определение кшровых постоянных [22] опирается в первую очередь на масштабный, пространственный фактор. Оно неявно предполагает постоянное существование наблюдателя . Современные теории эволюции Вселенной включают в рассмотрение временной фактор и уверенно оперируют с такими моментами ее развития, когда все вещество Вселешюй было сжато в сгусток сверхплотной раскаленной плазмы, состоящей из фотонов, квар-34  [c.34]

ОППОНЕНТ. Я знаком с упо> мяиутым Вами учебником физики. И хотел бы обратить внимание на продолжение приведенной цитаты Однако ие-смотря на это, свет позволил нам познать окружающий мир при помощи нашего зрения в гораздо большей степени, чем мы могли бы это сделать при помощи всех остальных чувств, вместе взятых . АВТОР. Вы хотите тем самым сказать, что исследование физической природы света не так уж и необходимо ОППОНЕНТ. Я, конечно, понимаю, что природу света исследовать надо. Но насколько это важно на практике Френель не знал квантовой оптики, ему была неизвестна также электромагнитная природа световых волн. Он считал, что свет — это упругие волны в некоем эфире следовательно, как мы теперь понимаем, он весьма упрощенно представлял себе природу света. Несмотря на это он сумел объяснить, например, явление частичного отражения и преломления света на границе двух диэлектриков, а его формулами для коэффициентов отражения пользуются и по сей день. Во всех современных учебниках по оптике можно найти формулы Френеля . В ка-  [c.8]


Рассмотрим свойства открытых квантовых систем в термостате. Макроскопически такие системы описываются переменными Т, V, х. Границы, отделяющие систему от термостата, проницаемы для частиц. Соответствующее этим условиям распределение по состояниям — большое каноническое распределение — может быть получено подобно каноническому, исходя из микрока-нонического распределения для объединенной изолированной системы с энергией Ео и числом частиц N .  [c.218]

Анализируются основные свойства движения частицы в одномерной бесконечно 1лубокой яме и яме конечной [лубины и отмечается существование типично квантового явления проникновения частицы ia границы потенциальной ямы конечной 1. 1убины,  [c.164]

Осгавление Бором открытым вопроса о границе между микроскопической квантовой системой и макроскопическим прибором и наблюдателем не обесценивает его утверждения о принципиальном различии между теорией квантовых объектов, описываемых уравнением Шредингера, и классических объектов, к которым уравнение Шредингера неприменимо. Здесь необходимо подчеркнуть, что понятие квантового и классического объекга не следует связывать с геометрическими размерами. В утверждении Бора эта связь отражает лишь исторические обстоятельства возникновения квантовой механики при анализе явлений в микроскопических физических системах. В настоящее время известно большое число квантовых явлений макроскопических масштабов и даже вся Вселенная в определенном смысле представляется как единый квантовый объект. Следовательно, граница между квантовым и классическим объектами не определяется их геометрическими размерами.  [c.408]

Кроме состояний I 5d 6s2ftp, в спектре ртути Бейтлер наблюдал еще состояние I 5d 6s2rt.f. Наблюденные серии новых термов стремятся к двум различным пределам, отвечающим двум различным состояниям иона Hg" " 5d бs2 Dз/J и Ds/j. Термы состояний I обычно хорошо укладываются в сериальные формулы типа Ридберга, В табл. 77 приведены длины волн и частоты линий поглощения Hg I 5d ° 6s Sq—5d бз2/гр величина термов 5d 6s rtp j, отсчитанная от границы Hg 5d бs2 D5 J, и величина эффективных квантовых чисел , соответствующая этим термам  [c.325]

Таким образом, использование газовой Модели и модели дисперсного тела при анализе переноса в жидких и твердых телах позволяет объяснить ряд закономерностей переноса. Однако необходима дальнейшая проверка уравнений, приведенных в этом разделе, и определение границ их применимости. Полученные результаты являются ка-чественнйми и предварительными и требуют уточнений, для которых необходимо использование аппарата квантовой механики, термодинамики и статистической физики.  [c.188]

Однако в это же время анализ опытных данных по равновесному тепловому излучению н фотоэффекту показал, что В. о. имеет определ. границы приложения. Распределение энергии в спектре теплового излучения удалось объяснить М. Планку (М. Plank 1900), к-рый пришёл к заключению, что алемонтарная колебательная система излучает и поглощает не непрерывно, а порциями — квантами. Развитие А. Эйнштейном (А, Einstein) теории квантов привело к созданию новой корпускулярной оптики — квантовой оптики, к-рая, дополняя эл.-магн. теорию света, полностью соответствует общепризнанным представлениям о дуализме света (см. Корпускулярно-волновой дуализм).  [c.305]

Здесь п — квантовое число, нумерующее уровни. При переходе к классич. механике величина п играет роль адиабатического инварианта. Если одна или обе границы классич. движения, близки к особониостям потенциала, то в правой части ур-ния (6) вместо слагаемого Уг появляется ие зависящая от п постоянная у, значение к-рой определяется характером особенности.  [c.253]

Наряду с туннельным переходом чисто квантовым эффектом является над барьерное отражение, происходящее при энергиях, превосходящих высоту барьера (и даже в отсутствие к.-л. барьера, напр, при прохождении частицы над потенц. ямой). Классич. частица в этом случае свободно проходит над барьером и лишь её кинетич. энергия изменяется от величины (6 — Vi) до величины ( —V. ) [при прохождении слева направо в поле с V(x), изображённой на рис. 6]. Волновым аналогом надбарьерпого отражения частиц является частичное отражение световой волны от границы раздела двух прозрачных сред. Для гладких  [c.286]


Смотреть страницы где упоминается термин Квантовая граница : [c.37]    [c.177]    [c.159]    [c.435]    [c.225]    [c.408]    [c.408]    [c.685]    [c.696]    [c.922]    [c.249]    [c.277]    [c.317]    [c.396]    [c.600]    [c.635]    [c.288]   
Стохастичность динамических систем (1984) -- [ c.186 ]



ПОИСК



Границы применимости волновой теории света и элементы квантовой оптики -а-г. - Глава

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте