Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазовая переменная

Модели в алгоритмической и аналитической формах называют соответственно алгоритмическими и аналитическими. Среди алгоритмических моделей важный класс составляют имитационные модели, предназначенные для имитации физических или информационных процессов в объекте при задании различных зависимостей входных воздействий от времени. Собственно имитацию названных процессов называют имитационным моделированием. Результат имитационного моделирования — зависимости фазовых переменных в избранных элементах системы от времени. Примерами имитационных моделей являются модели электронных схем в виде систем обыкновенных дифференциальных уравнений или модели систем массового обслуживания, предназначенные для имитации процессов прохождения заявок через систему.  [c.147]


Подсистема Фазовая переменная  [c.166]

Особенностью топологических уравнений является то, что каждое из них связывает однотипные фазовые переменные, относящиеся к разным элементам системы. Примером могут служить уравнения законов Кирхгофа, записываемые относительно либо токов, либо напряжений ветвей. Для компонентных уравнений характерно то, что они связывают разнотипные фазовые переменные, относящиеся к одному элементу. Так, уравнение закона Ома связывает ток и напряжение резистора.  [c.167]

Элементы подсистем в зависимости от числа однотипных фазовых переменных, входящих в ММЭ, делят на двухполюсники и многополюсники. Двухполюсник характеризуется парой переменных типа U и /, определяется так же, как простой элемент, если снять условие линейности уравнения. Многополюсник можно представить как совокупность взаимосвязанных двухполюсников.  [c.168]

Перечисленные допущения характерны для функционального моделирования, широко используемого для анализа систем автоматического управления. Элементы (звенья) систем при функциональном моделировании делят на три группы 1) линейные безынерционные звенья для отображения таких функций, как повторение, инвертирование, чистое запаздывание, идеальное усиление, суммирование сигналов 2) нелинейные безынерционные звенья для отображения различных нелинейных преобразований сигналов (ограничение, детектирование, модуляция и т. п.) 3) линейные инерционные звенья для выполнения дифференцирования, интегрирования, фильтрации сигналов. Инерционные элементы представлены отношениями преобразованных по Лапласу или Фурье выходных и входных фазовых переменных. При анализе во временной области применяют преобразование Лапласа, модель инерционного элемента с одним входом и одним выходом есть передаточная функция, а при анализе в частотной области — преобразование Фурье, модель элемента есть выражения амплитудно-частотной и частотно-фазовой характеристик. При наличии нескольких входов и выходов ММ элемента представляется матрицей передаточных функций или частотных характеристик.  [c.186]

Важным фактором, управляя которым, можно добиться выполнения условий сходимости метода Ньютона, является близость точки начального приближения Vo к точке корня V. Это обстоятельство привело к появлению метода, повышающего вероятность сходимости метода Ньютона и называемого методом продолжения решения по параметру. В этом методе в решаемой системе уравнений выделяют параметр, влияющий на положение точки корня в пространстве фазовых переменных. Например, при анализе электронной схемы таким параметром может быть напряжение источника питания. Система (5.1) решается методом Ньютона многократно при ступенчатом изменении параметра. Пусть параметр Е выбран так, что при - 0 имеем V - 0. Тогда при первом решении выбираем Vq=0 и находим значение корня V, , соответствующее начальному значению параметра Е. Далее увеличиваем Е и решаем систему уравнений при начальном приближении Vo=Vj  [c.228]


Включение новой модели сопровождается появлением новых фазовых переменных. Очевидно, что для продолжения анализа должны быть определены значения этих переменных в момент вкл включения модели. Расчет этих значений целесообразно выполнять повторным интегрированием подсистемы дифференциальных уравнений включаемой модели на интервале [О, вкл].  [c.250]

Фазовая переменная 166 Файл 93  [c.397]

Выходные параметры пли фазовые переменные, фигурирующие в модели одной из подсистем (в одном из аспектов описания), часто оказываются внешними параметрами в описаниях других подсистем (других аспектов). Так, максимальные температуры корпусов электронных приборов в электрических моделях усилителя относятся к внешним параметрам, а в тепловых моделях того же объекта — к выходным параметрам.  [c.23]

Указание способа связи элементов друг с другом соответствует заданию топологических уравнений, представляющих собой соотношения между однотипными фазовыми переменными, относящимися к разным элементам  [c.47]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]

На макроуровне производится дискретизация пространств с выделением в качестве элементов отдельных деталей, дискретных электрорадиоэлементов, участков полупроводниковых кристаллов. При этом из числа независимых переменных исключают пространственные координаты. Функциональные модели на макроуровне представляют собой системы алгебраических или обыкновенных дифференциальных уравнений, для их получения и решения используют соответствующие численные методы. В качестве фазовых переменных фигурируют электрические напряжения, токи, силы, скорости, температуры, расходы и т. д. Они характеризуют проявления внешних свойств элементов при их взаимодействии между собой и внешней средой в электронных схемах или механических конструкциях.  [c.146]

Математические модели деталей и процессов на микроуровне отражают физические процессы, протекающие в сплошных средах и непрерывном времени. Независимыми переменными в этих моделях являются пространственные координаты и время. В качестве зависимых переменных выступают фазовые переменные, такие как потенциалы, напряженности полей, концентрации частиц, деформации и т. п. Взаимосвязи переменных выражаются с помощью уравнений математической физики — интегральных, интег-родифференциальных или дифференциальных уравнений в частных производных. Эти уравнения составляют основу ММ на микроуровне.  [c.154]

В используемых в САПР методах формирования ММС принято моделируемую систему представлять в виде сово-К)шности физически однородных подсистем. Каждая подсистема описывает процессы определенной физической природы, например механические, электрические, тепловые, гидравлические. Как правило, для описания состояния одной подсистемы достаточно применять фазовые переменные двух типов — потенциала и потока. В первых столбцах табл. 4.1 конкретизированы типы фазовых переменных применительно к ряду встречающихся подсистем.  [c.167]


Для отражения взаимосвязей подсистем различной физической природы, из которых состоит моделируемая техническая система, в эквивалентные схемы подсистем вводят специальные преобразовательные элементы. Различают три вида связей подсистем. Трансформаторная и гираторная связи выражают соотношения между фазовыми перемен-  [c.170]

На функционально-логическом уровне необходим ряд положений, упрощающих модели устройств и тем самым позволяющих анализировать более сложные объекты по сравнению с объектами, анализируемыми на схемотехническом уровне. Часть используемых положений аналогична положениям, принимаемым для моделирования аналоговой РЭА. Во-первых, это положение о представлении состояний объектов с помощью однотипных фазовых переменных (обычно напряжений), называемых сигналами. Во-вторых, не учитывается влияние нагрузки на функционирование элементов-источников. В-третьих, принимается допущение об однонаправленности, т. е. о возможности передачи сигналов через элемент только в одном направлении — от входов к выходам. Дополнительно к этим положениям при моделировании цифровой РЭА принимается положение о дискретизации переменных, их значения могут принадлежать только заданному конечному множеству—алфавиту, например двоичному алфавиту 0,1 .  [c.189]

Для решения систем линейных алгебраических уравнений (ЛАУ) AV = B применяют диакоптический вариант метода Гаусса, основанный на приведении матрицы коэффициентов к блочно-диагональному виду с окаймлением (БДО). При анализе электронных схем этот вариант называют методом подсхем. Б методе подсхем исходную схему разбивают на фрагменты (подсхемы). Фазовые переменные (например, узловые потенциалы) делят на внутренние переменные фрагментов и граничные переменные. Вектор фазовых переменных  [c.243]

Методы однонаправленных моделей и релаксации формы сигнала. Модели многих сложных элементов являются однонаправленными. В них могут быть выделены входные и выходные фазовые переменные, причем выходные не влияют на входные. Примерами однонаправленных моделей служат большинство моделей логических элементов.  [c.245]

Учет латентности фрагментов. Локальные погрешности интегрирования зависят от значения шага интегрирования А и от характера переходных процессов. Если фазовые переменные претерпевают быстрые изменения, то погрешность не выше заданной обеспечивается при малых h. Если же фазовые переменные меняются медленно, то значения Л при тех же погрешностях могут быть существенно больше. В сложных схемах ЭВА, как правило, большинство фрагментов в любой момент времени относится к неактивным (латентным), т. е. к таким, в которых не происходит изменений фазовых переменных, причем отрезки латентности Т лат могут быть ДОВОЛЬНО продолжительными. в латентных фрагментах допустимо увеличивать шаг интегрирования вплоть до значения Глат, что эквивалентно исключению уравнений фрагментов из процесса интегрирования на период их латентности. Такое исключение выполняется в алгоритмах учета латентности, относящихся к алгоритмам событийного моделирования. Основу этих алгоритмов составляет проверка условий латентности. Примером таких условий может служить  [c.248]

Собственные колебательные движения, кроме графика колебаний, можно изобразить на фазовой плоскости -плоскости перемеЕШЫх и которые называются фазовыми переменными. Для случая колебаний точки фазовыми переменными являются X и v = x. Построим фазовый портрет гармонических колебаний точки. Имеем  [c.432]

Фазовые переменные харлкгеризуют фн.зическое или информационное состояние объекта, а их изменения во времени выражают переходные процессы в объекте.  [c.23]

Ф у и к ц и о II а л Ы1 ы с ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или ИЗГ0Т0ВТ1СНИИ. Обычно функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры.  [c.37]

На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). В этих уравнениях независимой переменной является время t, а вектор зависимых переменных V составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости механических систем, напряжения и силы тока электрических систем, давления и расходы гидравлических и пневматических систем и т. п. Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 10 , то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям па метауровпе.  [c.38]

В ряде предметных областей удается использовать специфические особенности функционирования объектов для упрощения ММ. Примером являются электронные устройства цифровой автоматики, в которых возможно применять дискретное представление таких фазовых переменных, как напряжения и токи. В результате ММ становится системой логических уравнений, описывающих процессы преобразования сигналов. Такие логические модели существенно более экономичны, чем модели электрические, описывающие изменения напряжений и сил токов как непрерывных функций времени. Важный класс ММ на метауровне составляют модели массового обслуживания, применяемые для описания процессов функционирования ииформацнопиых и вычислительных систем, производственных участков, линий и цехов.  [c.39]


Полная ММ — модель, в которой фигурируют фазовые переменные, характеризующие состояния всех имеющихся межэлсмеитных связей (т. е. состояния всех элементов проектируемого объекта).  [c.39]

Если состояние каждого элемента объекта характеризуется одной переменной типа ноте1[циала и одной переменной типа погока, а количество элементов в объекте равно сб, то подсистема (2.6) состоит из а уравнений с 2аЧ у неизвестными, а нодсистема (2.7) — из а уравнений с теми же неизвестными (здесь у — размерность вектора и, равная количеству реактивных элементов, т. е. элементов, в компонентных уравнениях которых имеются производные фазовых переменных но времени). Для решения системы алгебраических уравнений (2.6), (2.7) нужно ее доопределить с помощью у уравнений с уже введенными переменными 2/,, Е)/ . Такое доопределение осуществляется с помощью формул численного интегрирования  [c.48]

Большинство выходных параметров V проектируемых объектов являются функционалами зависимостей У( ), например, определенными интегралами, экстремальными значениями, моментами пересечения заданных уровней фазовых переменных. Решение системы (2.4) и расчет ыяходпы.к Ш1раме -ров-фупк1итоиалов составляют содержание процедуры анализа переходных процеееов.  [c.51]

Одним из наиболее общих подходов к анализу объектов па мстауровне является функциональное моделирование, развитое для анализа систем автоматического управления. В рамках этого подхода принимается ряд упрощающих предположений. Во-первых, па метауровпе, как и на макроуровне, объект представляется в виде совокупности элементов, связанных друг с другом ограниченным числом связей. При этом для каждого элемента связи разделяются на входы и выходы. Во-вторых, элементы считаются однонаправленными, т. е. такими, в которых входные сигналы могут передаваться к выходам, но сигналы на выходах не могут влиять па состояние входов через внутренние связи элемента. Сигналами при этом называют изменения фазовых переменных. В-третьих, состояния любого выхода не зависят от нагрузки, т. е. от количества и вида элементов, подключенных к этому выходу. В-четвертых, состояние любой связи характеризуется не двумя, а одной фазовой переменной (типа потенциала или типа потока), что непосредственно вытекает из предыдущего допущения.  [c.55]


Смотреть страницы где упоминается термин Фазовая переменная : [c.144]    [c.145]    [c.155]    [c.155]    [c.159]    [c.162]    [c.163]    [c.166]    [c.171]    [c.186]    [c.244]    [c.247]    [c.248]    [c.249]    [c.23]    [c.23]    [c.39]    [c.41]    [c.47]    [c.47]    [c.48]    [c.51]    [c.51]   
Теоретические основы САПР (1987) -- [ c.166 ]



ПОИСК



Дискретизация переменных в фазовом пространстве

Преобразование фазовых переменных в гидродинамике

СИСТЕМЫ С ПЕРЕМЕННЫМ КОЛИЧЕСТВОМ ВЕЩЕСТВА ФАЗОВЫЕ ПЕРЕХОДЫ

Тепло- и массоперенос при переменном критерии фазового или химического превращения



© 2021 Mash-xxl.info Реклама на сайте