Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проковка сварных соединений

Для уплотнения металла шва и измельчения зерен наплавленного и основного металла в зоне термического влияния рекомендуется производить проковку сварного соединения. При толщине металла до 5 мм проковку можно производить в холодном состоянии.  [c.443]

A. Проковка сварных соединений с помощью пневматических устройств и обработка их ультразвуком сразу же после окончания сварки, что позволяет в сварных соединениях ослаблять пиковые значения напряжений 1-го и 2-го родов.  [c.547]


Прокатка сварных соединений 75 Прокат двухслойный 216 Проковка сварных соединений 75 Проницаемость материала прн действии коррозионной среды 223 Прочность сварных конструкций 63  [c.373]

Применение проковки сварных соединений еще более улучшает механические свойства сварных соединений.  [c.133]

Механические способы (проковка, прокатка, вибрация, взрывная обработка, ультразвуковая обработка, приложение нагрузки к сварным соединениям) основаны на создании пластической деформации металла сварных соединений, вследствие чего происходит снижение растягивающих остаточных напряжений.  [c.36]

Принципиальные схемы сварки трением показаны на рис. 73. Простейшая и наиболее распространенная схема процесса показана на рис. 73, а. Две детали, подлежащие сварке, устанавливают соосно в зажимах машины одна из них — неподвижна, другая приводится во вращение вокруг их общей оси. На сопряженных торцовых поверхностях деталей, прижатых одна к другой осевым усилием Р, возникают силы трения. Работа, затрачиваемая при вращении на преодоление этих сил трения, преобразуется в тепло, которое выделяется на поверхностях трения и нагревает прилегающие к ним тонкие слои металла до температур, необходимых для образования сварного соединения (1000—1300°С — при сварке черных металлов). Нагрев прекращается при быстром (практически мгновенном) прекращении относительного вращения. Подготовленный таким образом к сварке металл подвергают сильному сжатию — проковке, в результате образуется прочное сварное соединение.  [c.118]

Для осуществления кузнечной сварки металл сначала нагревают (чаще всего в печи) до сварочного жара . Применительно к стали эта температура составляет 1500... 1600 К- Затем соединяемые детали подвергают совместной проковке и в ходе нее вследствие пластической деформации образуется сварное соединение.  [c.134]

Важный способ повышения усталостной прочности сварных соединений из титановых сплавов—механический наклеп сварного соединения различными способами (накатка роликами, проковка шва, дробеметная обработка и др.).  [c.158]

С целью упрощения и облегчения процесса проектирования и изготовления машин был проведен анализ характеристик сварных соединений перечисленных выше деталей с точки зрения требуемых усилий при нагреве и проковке, мощности главного двигателя, скорости вращения. В соответствии с предложенным Всесоюзным научно-исследовательским институтом электросварочного оборудования рядом типоразмеров машин сварки трением для сварки перечисленных выше деталей подходили машины, рассчитанные для деталей сечением 250—500—1000 мм . За основу конструкции была принята следующая компоновка  [c.196]


Имеется ряд технологических мероприятий, позволяющих снизить вероятность образования околошовных трещин в сварных соединениях литых аустенитных сталей. К ним следует отнести проковку свариваемых кромок [40], ведение процесса сварки электродами малого диаметра и ряд других. Эти мероприятия, однако не гарантируют полностью отсутствия трещин в околошовной зоне чисто аустенитных литых сталей.  [c.40]

При применении в связи с эксплуатационной необходимостью металлов с пониженной свариваемостью проектировать конструкции следует с учетом этого свойства. Для сведения к минимуму неблагоприятных изменений свойств металла сварного соединения и исключения в нем дефектов необходимо применять виды и режимы сварки, оказывающие минимальное термическое и другие воздействия на металл, и проводить технологические мероприятия (подогрев, искусственное охлаждение и др.), снижающие влияние на него сварочных воздействий. Термическая обработка после сварки (нормализация, закалка с отпуском и др.) может в значительной степени устранять неоднородность свойств в сварных заготовках. Прочность зоны сварного соединения может быть повышена механической обработкой после сварки прокаткой, проковкой и др.  [c.288]

Таким образом, на стадиях проектирования, изготовления и монтажа сварных конструкций необходимо принимать меры по уменьшению влияния сварочных напряжений и деформаций. Нужно уменьшать объем наплавленного металла и тепловложение в сварной шов. Сварные швы следует располагать симметрично друг другу, не допускать, по возможности, пересечения швов. Ограничить деформации в сварных конструкциях можно технологическими приемами сваркой с закреплением в стендах или приспособлениях, рациональной последовательностью сварочных (сварка обратноступенчатым швом и др.) и сборочно-сварочных операций (уравновешивание деформаций нагружением элементов детали). Нужно создавать упругие или пластические деформации, обратные по знаку сварочным деформациям (обратный выгиб, предварительное растяжение элементов перед сваркой и др.). Эффективно усиленное охлаждение сварного соединения (медные подкладки, водяное охлаждение и др.), пластическое деформирование металла в зоне шва в процессе сварки (проковка, прокатка роликом, обжатие точек при контактной сварке и др.). Лучше выбирать способы сварки, обеспечивающие высокую концентрацию тепла, применять двустороннюю сварку, Х-образную разделку кромок, уменьшать погонную энергию, площадь поперечного сечения швов, стремиться располагать швы симметрично по отношению к центру тяжести изделия. Напряжения можно снимать термической обработкой после сварки. Остаточные деформации можно устранять механической правкой в холодном состоянии (изгибом, вальцовкой, растяжением, прокаткой роликами, проковкой и т.д.) и термической правкой путем местного нагрева конструкции.  [c.42]

Возможна сварка чугунных деталей без предварительного нагрева (холодная сварка). Сварку ведут электродами из цветных металлов на медной основе. Медь не образует химических соединений с углеродом и нерастворима в железе, и шов получается неоднородным. Медно-железные электроды различной конструкции применяют чаще для заварки трещин, при сварке разбитых деталей с обеспечением хорошей прочности 18...25 кгс/мм (180...250 МПа). Электроды со стержнем из никелевого сплава используют в тех случаях, когда необходимо обеспечить хорошую обрабатываемость сварного соединения. Однако такие швы весьма склонны к усадке. И поэтому сварку необходимо вести при минимальном токе и малом проплавлении металла, при небольшой длине валиков с обязательной проковкой.  [c.129]

Для улучшения механических свойств сварных соединении осуществляют проковку или прокатку роликами шва в холодном и теплом состоянии.  [c.261]

После сварки рекомендуется проковать шов. При толщине листов до 4 мм проковку выполняют в холодном состоянии, а при большей толщине — при температуре 500... 600 °С. Чтобы придать сварному соединению более высокую вязкость после проковки, шов и прилегающую к нему зону основного металла нагревают до температуры 550...600 °С и быстро охлаждают в воде.  [c.335]


Механическая проковка (рис. 4.1.24) снижает остаточные сварочные напряжения и повышает ресурсные параметры сварных соединений. Предлагаются различные способы и технологии механической проковки для достижения указанных целей.  [c.404]

Обработка сварных соединений из латуни после сварки производится так же, как при сварке меди. Однако в отличие от меди, температура проковки латуни зависит не от толщины свариваемой детали, а от содержания цинка в основном металле. Холодную проковку латуней алюминиевым молотком или пневмомолотком применяют для латуней, содержащих менее 40 % цинка,  [c.119]

Укрыть отливку и место дефекта асбестом или засыпать песком и обеспечить после сварки медленное ее охлаждение, не оставляя ее на сквозняке или в холодном помещении. Произвести проковку отливки, совмещая ее с отжигом при температуре 300—350 С и с выдержкой в печи в течение 2—5 ч для снятия остаточных напряжений и улучшения механических свойств сварного соединения  [c.130]

При сварке этих сталей предварительный и сопутствующий подогрев, проковка щвов, промежуточная и последующая термическая обработка назначаются в зависимости от толщины свариваемых элементов, жесткости конструкции и требований, предъявляемых к сварным соединениям.  [c.5]

Пластическая деформация, происходящая в процессе сварки трением, является существенным фактором, определяющим принципиальную возможность образования сварного соединения и его механические свойства. Необходимый для сварки нагрев (интенсивность тепловыделения) при прочих равных условиях обусловлен скоростью вращения и величиной осевого усилия. Кроме того, весьма важным является быстрое (практически мгновенное) прекращение движения. В ряде случаев сварки для получения доброкачественного соединения необходимо приложение в конце процесса повышенного давления ( проковки ).  [c.41]

Хрупкость сварного соединения Недостаточно время включения завышено время проковки неудовлетворительный термический цикл после сварки излишняя интенсивность охлаждения места сварки  [c.86]

Водород, соединяясь с кислородом закиси меди, образует водяной пар, который является причиной появления трещин (водородная болезнь) и пор в металле шва. Стойкость металла шва против пор при сварке меди ниже, чем стали. Самые хорошие результаты получаются при использовании односторонних стыковых швов со сквозным проплавлением кромок. Примеси свинца, мышьяка, висмута и сурьмы затрудняют сварку меди. Наилучшую свариваемость имеет электролитическая медь, содержащая не более 0,4% примесей. Высокая теплопроводность меди требует применения концентрированных источников нагрева, в ряде случаев предварительного и сопутствующего подогревов, а высокий коэффициент линейного расширения — принятия дополнительных мер против коробления конструкции. Сварные соединения собираются без зазора ввиду большой жидкотекучести меди, общий угол разделки кромок 60—70°. Для изделий толщиной 1—3 мм используют сварные соединения с отбортовкой, заваривая их без присадочного металла. При толщине 4—10 мм применяется 1 -образ-ная разделка с притуплением 1,5—3 мм, при больших толщинах — Х-образная. Изделия толщиной более 6 мм сваривают с предварительным подогревом. Для получения металла шва и околошовной зоны с мелкозернистым строением сварные соединения подвергают проковке в холодном состоянии (толщина до 6 мм) и при температуре 200—30б°С (толщина свыше 6 мм), а пластичность и  [c.142]

Как следует из таблицы, применение флюса БМ-1 повышает плотность и механические свойства сварных соединений прочность шва без проковки при разрыве равна или выше прочности основного металла.  [c.353]

Проковка швов, производимая при высоких температурах, значительно повышает ударную вязкость сварных соединений. Опытами установлено, что образцы из малоуглеродистых сталей, сваренные встык, имеют без проковки а = 4,9 кгм1см и после проковки = = 16,3 KZMj M .  [c.853]

Ускоренные испытания показали, что с помощью метода Ло,кати с применением гипотезы Майнера можно определять пределы усталости соединений, выполненных сваркой трением. Наиболее высокая усталостная прочность сварных соединений достигается на следующем режиме давление нагрева 4,5—5 дан/мм2 относительная скорость вращения 2,25— —2,30 м/с, давление проковки 9—10 дан/мм , время нагрева при этом равно времени достижения установ Ившегося процесса тепловыделения.  [c.186]

Проковка металла шва и околошовной зонб/. Сварочные напряжения могут быть сняты почти полностью, если в зоне сварки создать дополнительные пластические деформации. Проковку сварных швов на сталях проводят в процессе остывания металла при температурах выше 450 °С или ниже 150 °С. В интервале температур 200...400°С в связи с пониженной пластичностью металла при его проковке возможно образование надрывов. Специального нагрева сварного соединения для выполнения данной операции, как правило, не требуется. Удары наносят вручную молотком массой 0,6... 1,2 кг с закругленным бойком или пневматическим молотком с небольшим усилием. При многослойной сварке проковывают каждый слой, за исключением первого, в котором от удара могут возникнуть трещины. Этот же прием применяют для снятия напряжений при заварке трещин и замыкающих швов в жестких конструкциях.  [c.38]

Ннзкоуглеродистые стали хорошо свариваются ацетиленокислородным пламенем без применения флюса. Причем, чем меньше содержание углерода в металле, тем легче осуществляется процесс сварки. С увеличением содержания углерода растет вероятность образования хрупких структур и пористости металла шва. Улучшение структуры достигается последующей проковкой металла шва при температуре вишнево-красного каления с медленным охлаждением. Это особенно существенно, когда сварное соединение должно работать на изгиб, растяжение и удар. Пори--стость металла шва устраняется использованием присадочного металла с пониженным по отношению к основному металлу содержанию углерода.  [c.87]


Для предохранения латуни от последующего коррозионного растрескивания сварное соединение после проковки подвергают низкбтемпературному отжигу (270—300 ) (см. табл. 4.4).  [c.121]

В основном металле, обработанном давлением в горячем состоянии, эвтектика Си— lIjO вырождается. Частицы U2O имеют форму округлых включений (фото 6.158, 6.159, 6.160). В таком виде она не снижает пластичность металла. Поэтому при определенных обстоятельствах можно улучпцпъ свойства сварных соединений кислородсодержащей меди путем проковки металла шва и зоны термического влияния при достаточно высоких температурах (выше температуры рекристаллизации).  [c.88]

Пятый уча1сток (5) аколошавиой зоны, получивший название участка рекристаллизации или старения, включает в себя металл, нагретый от температуры 500° С до температуры 720° С. На этом участке происходит сращивание раздробленных при пластических деформациях (прокатке, проковке и т. д.) зерен основного металла. В процессе рекристаллизации из обломков зерен зарождаются и растут новые, равновесные зерна. Если выдержка при температуре рекристаллизации будет излишне продолжительной, то произойдет не объединение раздробленных осколков, а значительный рост зерен. При сварке металлов, не подвергшихся пластическим деформациям (например, литые сплавы), процесс рекристаллизации не имеет места. На этом же участке околошовной зоны при некоторых условиях сварки углеродистых конструкционных сталей с содержанием углерода до 0,3% происходит снижение пластичности, и в первую очередь ударной вязкости, и повышение прочности металла. Снижение пластичности может явиться причиной снижения работоспособности сварного соединения при эксплуатации. За пятым участком околошовной зоны расположены участки, нагретые в пределах 100—500° С. Эти участки в процессе сварки не претерпевают видимых структурных изменений. Однако при сварке низкоуглеродистых сталей на узком участке (участок 6), подвергшемся иагреву в пределах 100—300° С, наблюдается резкое падение ударной вязкости. Так как участок расположен вне зоны концентрации напряжений, наличие его в большинстве случаев не представляет непосредственной опасности для работоспособности сварного соединения. При многослойной сварке строение околошовной зоны несколько меняется. Изменение строения околошовной зоны при сварке длинными участками, когда ко времени наложения последующего прохода металл успел остыть до температуры окружающей среды, проявляется в менее четком строении околошовной зоны всех проходов, кроме последнего. Менее четкое строение околошовной зоны обусловливается повторным термическим воздействием, являющимся своего рсда отпуском. При сварке короткими про-  [c.93]

Проковка или обкатка сварных соединений создает в шве и околошовной зоне местные пластичесюие деформации, противоположные вызванным сваркой. Это приводит к уменьшению, а иногда полному снятию остаточных сварочных напряжений.  [c.122]

Сварка покрытыми электродами позволяет получить удовлетворительные механические свойства сварных соединений, но состав металла шва существенно отличается от состава основного металла из-за легирования при сварке раскислителями. Без подогрева и разделки кромок сваривают изделия из меди толщиной до 4 мм, при толщине 5—10 мм следует применять предварительный подогрев до 250—500 °С и У-образную разделку кромок с углом 60—70° и притуплением 1,5— 3 мм. При больших толщинах требуется Х-образная разделка. Для изделий толщиной более 20 мм швы хорошего качества можно получить только при подогреве до 700—750°С. Наиболее широкое распространение получили электроды Комсомолец-100 , ЗТ, ОМЗ-1 и ММЗ-2. Сварку ведут электродами диаметром 4 —6 мм на постоянном токе обратной полярносги. Электроды ММЗ-2 можно использовать и при переменном токе. Сварку выполняют короткой дугой без колебаний конца электрода. Стыковые швы сваривают на графитовых или медных пластинах. После сварки рекомендуются проковка и быстрое охлаждение водой.  [c.123]

Существует значительное число способов холодной сварки чугуна. Ручная сварка электродами из цветных металлов на медной основе получила широкое распространение для заварки трещин с обеспечением хороших прочностных показателей свариваемых деталей. Сварку ведут электродами ОЗЧ-2 и СТЧ-3 на постоянном токе прямой полярности в нижнем или наклонном положениях небольшими участками длиной 30—80 мм с очисткой и проковкой каждого валика. Зазоры между кромками при заварке трещин рекомендуется заплав-лять стальными электродами. Возобновляют сварку после охлаждения места сварки до 50—70 °С. Длина дуги у электродов ОЗЧ-2 должна быть предельно короткой. Применяют электроды диаметром 4—7 мм, силу тока соответственно 140—300 А. Сварку электродами со стержнем из сплава на основе никеля используют для устранения мелких дефектов и прежде всего, когда требуется обеспечить обрабатываемость сварного соединения, а также его цвет, аналогичный цвету основного металла. Для сварки используют электроД1 1  [c.132]

При сварке конструкционных сталей — углеродистых и среднелегированных во избежание закалки, образования трещин, изменения структуры необходимо применять в зависимости от химического состава стали предварительный нагрев до 300° С с последующим после сварки отжигом или отпуском. При ручной электродуговой сварке следует применять преимущественно постоянный ток использовать электроды, обеспечивающие в металле шва необходимые свойства. Для повышения прочности сварного соединения в наплавляемый металл вводят в ряде сучаев легирующие элементы (Мп, 81, Сг, Т1 и др.), способствующие получению мелкозернистой структуры производят послойную проковку шва накладывают валики малого сечения производят местное охлаждение наплавленного металла теплоотводящими медными прокладками или водой во избежание перегрева зоны сварки  [c.290]


Смотреть страницы где упоминается термин Проковка сварных соединений : [c.370]    [c.109]    [c.560]    [c.170]    [c.368]    [c.82]    [c.125]    [c.151]    [c.94]    [c.141]    [c.324]    [c.327]    [c.498]   
Проектирование сварных конструкций в машиностроении (1975) -- [ c.75 ]



ПОИСК



Проковка



© 2025 Mash-xxl.info Реклама на сайте