Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные молекулы вращательная структура полос

Линейные молекулы 11, 119, 124 136, 184 вращательная структура полос 184— 222  [c.740]

Наблюденные комбинационные линии. К сожалению, вплоть до настоящего времени, не разрешена вращательная структура ни одной комбинационной полосы линейной многоатомной молекулы. Обычно наблюдаются только ветви Q параллельных полос, выродившиеся в линии, причем отдельные линии ветвей  [c.427]

Инфракрасные вращательно-колебательные спектры (см. также Тонкая структура инфракрасных полос) асимметричных волчков 497 (глава IV, 46) линейных молекул 408 (г.тава IV, 16) молекул со свободным или заторможенным внутренним вращением 527 (глава IV, 56)  [c.601]


Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]

Вращательная структура запрещенных электронных переходов, которые происходят благодаря электронно-колебательному взаимодействию, совершенно такая же, как и соответствующих разрешенных переходов. Например, при изогнуто-линейном переходе Az — в молекуле XYg, который запрещен правилами отбора для дипольного излучения, возможны электронно-колебательные переходы с уровня ООО основного состояния на верхние колебательные уровни, связанные с возбуждением нечетного числа квантов антисимметричного валентного колебания. Поскольку эти верхние состояния относятся к электронно-колебательному тину Bi, тонкая структура соответствующих полос должна быть такой же, как и полос электронных переходов типа В —  [c.221]

Вращательные постоянные В ж В" можно определить из подполос параллельных полос точно таким же способом, как и для линейных молекул. Даже если подполосы не разрешены, как в случае СВд, определить В и В" все же можно, хотя получаемые значения будут гораздо менее точными, поскольку при этом сказывается различие неразрешенной. ЙГ-структуры при малых и больших значениях /. Если / Г-структура разрешена лишь частич-  [c.228]

В случае молекул точечной группы 1)зн, а также аналогичных молекул с плоскостью симметрии, перпендикулярной оси третьего или более высокого порядка, в отдельных ветвях подполосы (+/), К = 1 происходит чередование интенсивности, так как уровни Л) и Л 2 имеют различные статистические-веса в зависимости от величины ядерного спина одинаковых ядер. Однако-в каждой из двух ветвей, на которые расщепляется данная ветвь из-за удвоения -типа, чередование интенсивности происходит противоположным образом. Поэтому чередование интенсивности не будет наблюдаться до тех пор, пока не будут разрешены компоненты атого удвоения. Если в ветвях такой пары отсутствуют чередующиеся линии, то в результате будет наблюдаться одна ветвь с одиночными линиями, но с колебанием вращательной структуры аналогично тому, как это происходит в полосах П — П симметричных линейных молекул с нулевым ядерным спином одинаковых ядер. Амплитуда изменения интенсивности при чередовании зависит от числа одинаковых ядер и их спина точно так же, как в подполосах с К = О переходов А — А (см. выше).  [c.239]


Структура полос запрещенных переходов, которые становятся возможными для магнитного дипольного излучения, совершенно аналогична структуре полос при обычных электрических дипольных переходах (как в линейных молекулах). По этой причине правила отбора для квантовых чисел / и К остаются теми же, тогда как правила отбора для электронно-колебательно-вращательных типов симметрии изменяются А <--> А вместо А <-- А о  [c.242]

Для сферического волчка все три момента инерции одинаковы и, следовательно, в первом приближении формула для вращательной энергии очень простая. Она совершенно такая же, как и для линейных молекул [см. выражение (1,131)]. Естественно, что в этом приближении мы должны получить очень простую структуру полос. В действительности же структура полос сильно усложняется из-за кориолисовых взаимодействий. Ниже будет рассмотрен только электронный переход Р2 — Ах в молекулах точечной группы Т а (т. е. в тетраэдрических молекулах). Это единственный тип перехода, разрешенный при поглощении излучения молекулами, находящимися в полносимметричном Ах) основном состоянии (табл. 9).  [c.243]

В молекулах типа сферического волчка положение вращательных линий в колебательно-вращательной полосе определяется такой же формулой, что и для многоатомных линейных молекул. Взаимодействие колебательного и вращательного движений молекулы обусловливает расщепление трижды вырожденных колебаний и существенно усложняет характер тонкой структуры колебательно-вращательных полос.  [c.11]

Закись азота, N20. Число электронов молекулы N 0 и молекулы СОа одинаково, II поэтому можно было бы также ожидать, что она имеет линейную симметричную структуру. Однако исследование колебательного и колебательно-вращательного спектров однозначно показывает, что молекула К О, хотя и линейна, но не симметрична. Форма молекулы N — N — О. Три наиболее интенсивные инфракрасные полосы имеют частоты  [c.301]

Так как основным электронным состоянием всех известных линейных многоатомных молекул является состояние И, нам не нужно рассматривать влияние на вращательно-колебательный спектр электронного момента количества движения Л. Роль электронного момента играет колебательный момент количества движения I, и поэтому структура инфракрасных полос линейных многоатомных молекул во всех отношениях подобна структуре соответствующих электронных полос двухатомных молекул.  [c.409]

Вращательная структура электронных спектров. Согласно принципу франка — Кондона, при разрешённом электронном переходе тип симметрии колебат. уровня энергии не изменяется, вращат. структура виб-ронной полосы определяется гл. обр. типом электронного перехода. В частности, вращат. структура электронного перехода Ч) — 2 двухатомной или линейной многоатомной молекулы состоит, как и в случае чисто колебат. спектра, из Р- и й-ветвей, соответствующих вращат. переходам с AJ = —1 и - -1 соответственно. В случае переходов — 2 и т. д. 1 заме-  [c.204]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]


Несмотря на то что тонкая вращательная структура не была разрешена ни для одной из полос ридберговских серий, представляется совершенно очевидным, что во всех верхних состояниях этих серий молекула СОг линейна, так как ион СО в основпом состоянии имеет линейную структуру (см. выше). Это заключение подтверждается отсутствием в спектре длинных прогрессий в деформационном колебатш. В настоящее время  [c.511]

С8г. В спектре молекулы сероуглерода, имеющей такое же количество валентных электронов, что и молекула СОг, наблюдается весьма характерная область поглощения в интервале длин волн от 4000 до 3500 А, которая ири увеличении давления расширяется как в сторону коротких, так и в сторону болое высоких длин волн. Даже на спектрограммах, полученных на приборах со средней дисперсией, эта область поглощения имеет вид линейчатого спектра. Дн<енкинс [626] впервые отметил, что каждая линия представляет собой кант полосы с простой тонкой структурой. Детальный анализ вращательной структуры ряда полос этой системы был выполнен Либерманом [746]. Несмотря на то что молекула СЗг в основном состоянии имеет линейную структуру, колебательный анализ полос встретил значительные трудности. Клеман [680] получил спектр Sg  [c.513]

Две интенсивные системы полос, характер которых обсуждался выше, представляют собой первые члены двух довольно длинных ридберговских серий, наблюдаемых Прайсом [1013]. Система, являющаяся вторым членом первой серии и расположенная при 1250 А, была исследована на приборе с высоким разрешением Герцбергом [523], который нашел, что эта система связана с переходом Пц — Zg. Анализ вращательной структуры подтверждает линейное строение молекулы в возбужденном состоянии. В горячих полосах, сопутствующих основным полосам, наблюдается ясно различимое расщепление Репнера — Теллера. Логичным представляется заключение, что верхние состояния и других членов ридберговской серии также представляют собой состояпия тппа Пц. Предел этой серии расположен при 91 950 см , в то время как вторая серия  [c.527]

Спектры многоатомных молекул гораздо сложнее и зависят от симметрии молекулы. Для линейной молекулы, например СОг, число степеней свободы колебании а=4, а для ПаО а=3. Таким образом, каждая из основных полос по-глощения многоатомной молекулы в н1 фракрасной области соответствует определенному изменению одного илн нескольких колебательных квантовых чисел вме-,Сте с соответствующими вращательными линиями. Детальная структура многО етомных молекул может быт1< очень сложной.  [c.322]

Наблюдались две системы полос испускания подобного типа упоминавшиеся ранее полосы NH2 в спектрах испускания различных пламен, в спектрах разрядов, а также в спектрах комет. Единственное отличие от спектра поглощения заключается в том, что в спектре испускания появляются полосы, у которых в нижнем состоянии возбуждено по одному или по нескольку квантов одного или большего числа колебаний. Второй является система полос в спектре пламени окиси углерода, которые оставались не отнесенными в течение нескольких десятилетий. Однако недавно Диксон [283] показал, что эти полосы обусловлены изогнуто-линейным переходом в молекуле СОз- Все наблюдавшиеся полосы связаны с переходами с двух самых низких колебательных уровней возбужденного состояния (типа В2), в котором молекула сильно изогнута (0 122°). В нижнем же (в основном) -состоянии, в котором молекула линейна, в переходах участвуют высокие возбужденные колебательные уровни. Наблюдается характерное чередование четных и нечетных подполос в последовательных полосах прогрессии по 2, однако колебательная структура усложнена наличием резонанса Ферми. Переход относится к параллельному типу (фиг. 90, а), т. е. К = I" и были идентифицированы полосы со значениями от О до 4. Определение величины А — В ъ возбужденном состоянии не может быть произведено непосредственно из спектра (поскольку АК = 0), как и в случае спектра поглощения СЗг- Для этого необходимо знать разности энергий между уровнями с различными значениями I в нижнем состоянии. В случае молекулы СО2 такие разности энергий могут быть получены экстраполяцией данных из инфракрасных спектров (Куртуа [246]). Полученные вращательные постоянные верхнего состояния приведены в табл. 64 приложения VI.  [c.218]

Мультиплетное расщепление. Если результирующий спин электронов в одном или в обоих электронных состояниях отличен от нуля и если спин-орбитальное взаимодействие не является пренебрежимо малым, то для всех вращательных линий рассмотренных выше полос будет наблюдаться мульти-плетная структура. Как было показано в гл. I, разд. 3, при нелинейной конфигурации многоатомной молекулы мультиплетное расщепление в общем случае невелико и относится к тому же типу, как и в случае связи Ъ но Гунду для двухатомных молекул. Для линейной конфигурации мультиплетное расщепление может быть большим или малым в зависимости от того, какой случай связи, а или Ь по Гунду соответственно, имеет место (при нашем рассмотрении мы не касаемся случая связи с по Гунду). Таким образом, при нзогнуто-линейных и линейно-изогнутых переходах возможны комбинации случай Ь — случай а и случай а — случай Ь или случай Ъ — случай Ъ. Если для линейной конфигурации имеет место случай связи а, то следует рассматривать отдельно переходы с каждой мультиплетной компоненты этого состояния в нелинейное состояние в соответствии с правилами отбора (11,55)—  [c.218]

Было подробно изучено несколько случаев перпендику,тярных полос молекул типа слегка асимметричного волчка. В частности, хорошим примером может служить перпендикулярная полоса радикала HN N, фотография которой приводится на фиг. 108. В данном случае вращательные постоянные верхнего п нижнего состояний почти одинаковы. По этой причине, а также из-за очень малой асимметрии молекулы полоса очень похожа по своей структуре на схематический спектр симметричного волчка, приведенный на фиг. 99 наблюдается ряд почти эквидистантных ( -ветвей, похожих по внешнему виду на отдельные линии. Между ними имеется тонкая структура, обусловленная Р- и 2 -ветвями. Эти полосы поглощения являются типичными перпендикулярными полосами, в точности подобными перпендикулярным инфракрасным полосам. Очень большое расстояние между -ветвями АО см ) и уменьшение этого расстояния в два раза в случае дейтерировапного соединения говорит о том, что небольшая величина момента инерции /4 обусловлена почти исключительно атомом Н. В соответствии с этим следует предположить, что атом Н находится вне оси линейной группы N N. Применение приборов с более высоким разрешением позволило довольно полно разрешить некоторые подполосы и определить описанным выше способом все три вращательные  [c.258]


В основном состоянии X Bi молекула NHg сильно изогнута, так же как и молекула Н2О в своем основном электронном состоянии, в то время как в возбужденном состоянии A i молекула NH2 почти линейна (см. стр. 217). Снова, как и для других дигидридов, из-за сильного электронно-колебательного взаимодействия (эффект Реннера — Теллера) из одного П. -состояния линейной конфигурации возникают два состояния. Благодаря значительному изменению угла при электронном переходе в сиектре наблюдается длинная прогрессия полос с чередующейся интенсивностью для четных и нечетных значений К (так же как и в случае красных полос ВНг и СН2). Разности Д гС для уровней с i = О в верхнем состоянии сначала увеличиваются и только к концу прогрессии начинают уменьшаться. Дублетная структура электронного перехода обнаруживается в незначительном расщеплении почти всех линий (фиг. 95). Так же как и для красных полос ВН2 и СНг, момент перехода для рассматриваемой системы NH2 перпендикулярен плоскости молекулы (полосы типа С). Джонс и Рамсей [638а] проанализировали ряд горячих полос в спектре NH2 с целью определения значения частоты деформациоипого колебания V2 в основном состоянии. Вращательные и колебательные постоянные NH2 приведены в табл. 62.  [c.504]


Смотреть страницы где упоминается термин Линейные молекулы вращательная структура полос : [c.310]    [c.359]    [c.78]    [c.312]    [c.482]    [c.624]    [c.194]    [c.527]    [c.527]    [c.533]    [c.782]    [c.505]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.222 ]



ПОИСК



Вращательные линейных молекул

Вращательные полосы

Линейные молекулы

Линейные молекулы полосы

Линейные молекулы тонкой структуры вращательно-колебательных полос

Полосы структура

Структура линейная



© 2025 Mash-xxl.info Реклама на сайте