Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потери в электродвигателях переменные

При использовании метода эквивалентного тока необходимо иметь в виду, что здесь пренебрегают изменением постоянных потерь в электродвигателях (потерь в железе и на трение). Учитывается лишь изменение переменных потерь, пропорциональных квадрату силы тока. Это обусловливает значительные ошибки при применении метода к сериесным и асинхронным двигателям с низким os ср. В отношении двигателей остальных типов этот метод даёт вполне приемлемые результаты. Методам эквивалентного момента и мощности также свойственны неточности метода эквивалентного тока.  [c.36]


На московском заводе Динамо создана и применяется автоматическая линия испытания электродвигателей переменного тока. Машины испытывают на конвейере, при этом электродвигатель последовательно проходит все требуемые операции по технологии испытаний, как-то измерение омических сопротивлений обмоток статора и фазового ротора, измерение сопротивлений изоляции, коэффициента трансформации, потерь холостого хода и пр. Особенностью этих испытаний является то, что измеряются не абсолютные величины электрических параметров, а только отклонение от номинальных данных в процентах. Это позволяет значительно упростить измерительную аппаратуру и сам процесс испытания всех типов электродвигателей.  [c.610]

Применение коллекторных электродвигателей переменного тока и электродвигателей постоянного тока экономически более выгодно в силу незначительности электрических потерь.  [c.30]

При непосредственном соединении электродвигателей переменного тока с нагнетателями (наиболее целесообразном по соображениям надежности эксплуатации, уменьшения шума, уменьшения габаритов установки, а также предотвращения потери мощности в передаче) регулировка путем изменения числа оборотов весьма затруднена. Что касается электродвигателей постоянного тока, то при небольших мощностях число их оборотов весьма просто и экономично регулируется реостатами. Однако постоянный ток для си-..човых целей применяется редко.  [c.87]

Используя график на рис. 28, определим средние потери по формуле (84). Потери мощности в электродвигателе в определенные промежутки времени можно выразить через постоянные потери к и переменные потери V, т. е.  [c.69]

При сложном режиме работы станка электродвигатель в силу наличия постоянных потерь (потери в железе), а также потерь переменного характера в самой обмотке электродвигателя, зависящих от нагрузки (потери в меди), имеет сложный перемен 1ый режим нагрузки.  [c.117]

Общие потери состоят из постоянных и переменных. Постоянные потери не зависят от нагрузки. Сюда относятся потери в железе электродвигателя на вихревые токи, потери на трение в подшипниках механизмов и т. д. Следует заметить, что постоянные потери существенно на нагрев электродвигателя не влияют. Переменные потери меняются с изменением нагрузки и главным образом характеризуются степенью нагрева. Они пропорциональны величине квадрата тока.  [c.51]

Чтобы уменьшить температуру нагрева асинхронного двигателя с короткозамкнутым ротором, он должен иметь минимальный маховой момент, наибольший пусковой ток в момент пуска двигателя и повышенное скольжение. Перепады, возникающие по нагрузочному моменту, в период пуска должны отсутствовать. Допустимое число включений в час можно повысить, если снизить переменные потери в двигателе в момент пуска и торможения и увеличить теплоотдачу в период пауз. В первом случае необходимо уменьшить кинетическую энергию системы электродвигатель — станок и выбрать наиболее рациональную схему торможения во втором случае необходимо дополнительное охлаждение двигателя.  [c.52]


Максимальная потеря напряжения до зажимов электродвигателя допускается (в процентах от номинального напряжения) а) при переменном токе до 10—16% б) при постоянном— до 15—  [c.854]

Первое десятилетие XX в. ознаменовалось существенными усовершенствованиями электрических машин. В эти годы развернулись научные исследования физических процессов в электромагнитных механизмах [4]. Качество электрических машин удалось заметно повысить с получением новых ферромагнитных сплавов, идущих на изготовление остова. Например, в Германии были получены сплавы, отличавшиеся большой магнитной проницаемостью и малой коэрцитивной силой, что обеспечивало незначительные потери энергии в железе. Уточненные методы расчета, освоение рациональной технологии обработки деталей и разработка эффективных конструктивных форм также содействовали успеху. Все эти меры вели к уменьшению веса и снижению стоимости двигателей. Особенно сильно подешевели мелкие двигатели. По данным немецкого проф. Кюб-лера, цена двигателя переменного тока мощностью 1 л. с. упала с 450 марок в 1900 г. до 160 марок в 1908 г. Снижение цен прямо зависело от усовершенствования электродвигателей за это же время затрата материалов на изготовление асинхронных двигателей сократилась более чем в два раза. Заметно уменьшился и вес машин постоянного тока со второй половины 80-х годов XIX в. до 1912 г. вес электродвигателей снизился в 3,5 раза [3, с. 85—87].  [c.69]

Наличие экономически наивыгоднейшего значения скорости газов в газопроводе соединяющем аппараты системы очистки с горелками парогенератора, обусловливается противоположным действием различных экономических факторов. Так, уменьшение скорости в газопроводе приводит, с одной стороны, к снижению степени повышения давления в бустерном компрессоре, уменьшению затрачиваемой мощности электродвигателя и соответствующему уменьшению расхода топлива в энергосистеме. С другой стороны, это вызывает увеличение диаметра газопровода и его стоимости, а также затрат на тепловую-изоляцию газопровода. Одновременно увеличиваются потери тепла в. окружающую среду, что также приводит к определенному росту расходов на топливо и снижению его экономии. Соответственно изменению расхода топлива в ЭТУ изменяется и выработка химической продукции. Оптимальные скорости в этих условиях определяются по-минимуму переменной части указанных Затрат, равному  [c.126]

В зависимости от формы гистерезисной кривой и значений основных магнитных характеристик, различают магнитотвердые и магнитомягкие сплавы. Магнитотвердые сплавы (рис. 22.1, а) характеризуются широкой петлей гистерезиса, высоким значением коэрцитивной силы и применяются для изготовления постоянных магнитов. Магнитомягкие сплавы работают в условиях циклически изменяющихся магнитных полей и непрерьшного перемагничивания. Они, наоборот, имеют узкую петлю гистерезиса, малые значения Не и характеризуются небольшими потерями на гистерезис (рис. 22.1, б). Из них изготавливают, сердечники трансформаторов, электродвигателей и генераторов, детали слаботочной техники, т. е. такие изделия, которые подвергаются многократному переменному намагничиванию.  [c.819]

Требования, предъявляемые к динамометрам для измерения силы резания металлов. Изучая резание металлов, совершенно необходимо измерять силы на самом режущем инструменте. Измерение силы или момента силы резания путем определения мощности, потребляемой электродвигателем, ваттметрами или трансмиссионными динамометрами, встроенными в привод станка, нужно признать неприемлемым, так как при этом всегда остается неизвестным переменный коэффициент полезного действия привода станка. Потеря энергии в звеньях и узлах привода до шпинделя станка является значительной величиной, искажающей или скрывающей изменение сил и мощности при резании вследствие изменения технологических факторов резания.  [c.171]


Расчет на падение напряжения или на потерю мош ности. Падение напряжения—число V, затрачиваемых на преодоление сопротивления П. при пропускании через него тока потеря мощности — число W, затрачиваемых при этом на нагревание П. В двухпроводной системе постоянного тока или однофазного переменного при отсутствии сдвига фаз падение напряжения в в П. (прямом или обратном), по к-ро му течет ток к приемнику (электродвигателю, лампе и т. п.), равно  [c.414]

Узлы масляной системы газогенератора.,,Эйвон" смонтированы на специальной раме, установленной перед контейнером двигателя в правой части укрытия агрегата типа, ,Коббера-182". Маслобак вместимостью 200 л расположен в верхней части рамы. Применение для смазки синтетического масла обусловлено наличием в конструкции двигателя подшипников качения. Масло заливается в бак 1 (рис. 27) через специальное отверстие 55 в верхней части бака. Уровень масла контролируют по уровнемеру 5 и поплавковому регулятору уровня 2. Вывод масляных паров из маслобака в свечу 34 для уменьшения потерь масла осуществляют через каплеотстойник 37. Масло поступает во вторую секцию шестисекционного насоса 39 или 15 из бака. В системе газогенератора таких насосов два главный и вспомогательный. Оба насоса аналогичны по конструкции, приводятся в действие электродвигателями 38 и 16, и поэтому не имеет значения, какой из них является главным. При работе агрегата ручные краны 36 должны быть открыты. Приводами насосов являются электродвигатели переменного тока 40, 16. При нормальной работе оборудования в работе находится только один масляный насос. Масло под давлением 0,7 МПа проходит через обратный клапан 13 на сдвоенный масляный фильтр 21. В фильтре находятся два сменных фильтрующих элемента со степенью очистки 5 мкм. В работе должен находиться только один элемент.  [c.120]

На рис. 3 приведена эта зависимость. С увеличением параметра р, отмеченная чуветвительноеть может быть несколько понижена. Тем не менее практическая область применения простейшего инерционного пружинного гасителя — подавление колебаний постоянной частоты, возникающих, например, при работе синхронных электродвигателей, генераторов переменного тока и т. д. Соглаено (7) эффективноеть его работы при правильной настройке (6) достигается минимизацией диссипативных потерь в гасителе.  [c.329]

Пуск электродвигателя с короткозамкнутым ротором связан с большими потерями мощности и нагреванием обмоток. Успехи силовой полупроводниковой техники и средств автоматики дают возможность создать надежные и экономичные статические преобразователи частоты с приемлемыми для тепловозов размерами и массой. Этим обусловливается практическое использование в тепловозной тяге передачи переменного тока с асинхронными короткозамкнутыми электродвигателями, тем более, что для тепловозов с дизелями мощностью более 2940 кВт в секции при использовании тяговых электродвигателей постоянного тока придется существенно усложнять их конструкцию (применять сборные или сварные остовы, компенсационные обмотки и т. п. или увеличивать число осей). Харьковский завод Электротяжмаш им, Ленина, Ворошиловградский тепловозостроительный завод им. Октябрьской революции и Таллинский электромеханический завод им. Калинина создали опытный тепловоз ТЭ120 мощностью 2940 кВт с передачей переменного тока, на котором применены асинхронные короткозамкнутые тяговые электродвигатели ЭД-900 (рис, 49). Тяговые электродвигатели ЭД-900 с опорноосевой подвеской имеют следующие основные характеристики  [c.45]

Решая вопрос о выборе системы торможения для проектируемого станка, следует прежде всего учесть характер работы тормозного устройства. Если оно предназначается для кратковременного действия, т. е. должно уменьшать скорость станка до требуемой величины, чаше всего до нуля, очень бысгро, в течение немногих секунд или даже долей секунды, то речь может идти о механическом тормозе или электрическом торможении приводного двигателя. Нужно при этом учитывать те тирские возможности, которыми располагает современная электротехника в части тор.можсния электродвигателей как переменного, так и постоянного тока. Окончательный выбор 1ервой или второй системы торможения должен быть основ н на сопоставлении эксплуатационных особенностей обоих в.триангов и экономических показателей (стоимость устройства и эксплуатационные расходы, включая потери энергии при торможении). Иногда для очень быстрого останова прибегают к комбинированию обеих систем.  [c.466]

В роторах гистерезисных электродвигателей магнитно-твердые сплавы. используются для создания крутящего момента роторов и работают в переменном магнитном поле, напряженность которого составляет от 1,6 до 32 кА/м в зависимости от конструкции и назначения двигателя. Магнитное состояние таких сплавов характеризуется полной рабочей петлей гистерезиса, имеющей вершину в точке максимальной проницаемости 5 гпах)-При расчете и конструировании двигателей используются зависимости гистерезисных параметров от намагничивающего поля и индукции, а также данные о ТКЛР и удельном электросопротивлении сплава для согласования магнитно-твердого материала (активной части ротора) с конструктивными элементами ротора и правильного учета используемых и вредных потерь  [c.549]

На рис. 2.3 представлена схема алгоритма расчета технологической мощности для шнековых машин с переменной глубиной нарезки черняка, а в прил. 2 даиа программа расчета 2. МОЩНОСТЬ ЭЛЕКТРОДВИГАТЕЛЯ ПРИВОДА МАШИНЫ ДОЛЖНА ЬЫТЬ ЬОЛЬШЕ, ЧТОЬЫ КОМПЕНСИРОВАТЬ НЕ УЧТЕННЫЕ РАСЧЕТОМ ПОТЕРИ ЭНЕРГИИ  [c.25]


Смотреть страницы где упоминается термин Потери в электродвигателях переменные : [c.236]    [c.173]    [c.306]    [c.53]    [c.76]    [c.448]    [c.132]    [c.51]    [c.91]   
Крановое электрооборудование (1979) -- [ c.182 , c.198 ]



ПОИСК



Потери в электродвигателях

ЭЛЕКТРОДВИГАТЕЛИ 357 ЭЛЕКТРОДВИГАТЕЛИ

Электродвигатель

Электродвигатель переменного ток



© 2025 Mash-xxl.info Реклама на сайте