Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь Закалка — Глубина

Значения М приведены в табл. 3-4. Для магнитной проницаемости можно принять среднее значение Ра = 16, так как при обычно применяемых удельных мощностях 0,4—1,5 кВт/см значения рз лежат в пределах 9—25. Глубина нагретого слоя соответствует глубине слоя, содержащего после закалки не менее 50% мартенсита. В качестве расчетной температуры на внутренней границе слоя примем Т= 750 °С, что, как показывает опыт, справедливо для большинства конструкционных сталей. Это определение глубины закаленного слоя широко распространено, и мы будем им пользоваться и в дальнейшем. Таким же образом определяется глубина цементации и прокаливаемости.  [c.105]


Валки изготовляются из стали 50 с поверхностной закалкой на глубину 2—5 мм до твёрдости = 45 — 50.  [c.716]

Поверхностная закалка с нагревом газовым пламенем применяется в индивидуальном и мелкосерийном производстве. Этот способ пригоден для упрочнения поверхности деталей типа валов (шейки), шестерен (зубья) и т. п. из серого, ковкого, модифицированного чугунов, а также средне- и высокоуглеродистых сталей. Нагрев деталей производят горелками типа МЗГ-49, ГКЗ-58, ЛГ-200 и др. до температуры закалки на глубину 1—6 мм. После закалки детали подвергают низкому отпуску. Твердость деталей после обработки достигает HR 50—56. Долговечность шестерен повышается в 3—5 раз.  [c.475]

Рис. 3. Твердость по Виккерсу и износ по Савину стали 45 после кислородно-ацетиленовой поверхностной закалки (по глубине закаленного Рис. 3. Твердость по Виккерсу и износ по Савину стали 45 после кислородно-ацетиленовой <a href="/info/28930">поверхностной закалки</a> (по глубине закаленного
В качестве генераторов высокой частоты для высокочастотной закалки применяются машинные генераторы с частотой 500—10 ООО гц при мощности 7,5—2000 /сет. При этом для поверхностной закалки наиболее универсальными, простыми и надежными в эксплуатации оказались генераторы с частотой 8000 гц. Машинные генераторы служат для поверхностной закалки на глубину 2—5 мм больших и малых валов, пальцев, шеек коленчатых валов, распределительных валов, шлицевых валов, всевозможных деталей автомобиля, гильз цилиндров, втулок и т. д., для плавки стали, бронзы и латуни, а также для кузнечного нагрева и пайки.  [c.257]

С помощью коэрцитиметров можно контролировать также качество термической обработки сталей, так как коэрцитивная сила зависит от режима термообработки (температуры закалки, отпуска) глубину закаленного и цементированного слоев углеродистых сталей.  [c.381]

Широкие лабораторные исследования и натурные испытания показали, что во всех случаях долговечность деталей, изготовленных из сталей пониженной прокаливаемости, упрочненных поверхностной индукционной закалкой при глубинном нагреве, превосходит долговечность деталей, изготовленных с упрочнением путем цементации [119].  [c.133]


Опыт показывает, что в тех случаях, когда показателем прокаливаемости служит величина твердости стали на определенной глубине, результаты закалки одинаковы и при использовании стали большей прокаливаемости и охлаждении в соляном растворе.  [c.142]

Разработка методов поверхностной закалки при глубинном индукционном нагреве (см. гл. 10) позволила использовать закалку при индукционном нагреве как комплексный способ упрочнения, одновременно повышающий сопротивление статическим и усталостным нагрузкам при изгибе при высоком уровне контактной усталости и сопротивления износу. В этом случае при соответствующем выборе стали и режима обработки обеспечивается получение мартенситной структуры в поверхностном слое и улучшение свойств сердцевины. В табл. 16 приведены некоторые примеры подобной обработки.  [c.554]

Примечание. При закалке в масле сталь прокаливается на глубину более 400 мм.  [c.279]

Под прокаливаемостью стали следует понимать глубину закаленной зоны. С увеличением пористости прокаливаемость уменьшается, потому что, чем выше критическая скорость закалки, тем хуже прока-  [c.106]

Острые углы перед закалкой иногда обмазывают глиной или, защищают асбестом с целью избежать в этих углах слишком резкого охлаждения. Мелкозернистая сталь дает меньшую глубину прокаливания и соответственно меньше деформируется при закалке, а следовательно, менее склонна к образованию трещин. Для борьбы с дефектами при закалке применяют предварительную термическую обработку и последующую — после закалки.  [c.183]

Закаливаемость и прокаливаемость стали. Закаливаемость зависит от содержания в стали углерода. Чем больше углерода в стали, тем она лучше закаливается. Сталь с очень низким содержанием углерода (менее 0,3%) не закаливается. Прокаливаемость стали характеризуется ее способностью закаливаться на определенную глубину. Это очень важное свойство закаленной стали. При сквозной прокаливаемости все сечение закаливаемой детали приобретает однородную структуру непосредственно после закалки и отпуска. При малой прокаливаемости структуры слоев, лежащих ближе к поверхности, и внутренних слоев резко различаются внутренние слои намного мягче и прочность их ниже прочности закаленных слоев. Прокаливаемость зависит от критической скорости закалки. На глубину закалки влияют температура нагрева и закалочная среда. Условились закаленными считать слои, в которых содержание мартенсита не менее 50%.  [c.80]

Глубина слоя цианирования не превышает 0,25—0,5 м.ч. Для придания цианированному слою высокой твердости детали после цианирования подвергают закалке в воде или масле в зависимости от марки стали. Закалку производят при 760—780° с отпуском при 150—170°. Твердость закаленного цианированного слоя очень высокая и достигает =63- 65.  [c.131]

Для большинства марок углеродистых малолегированных и среднелегированных сталей глубина прокалнваемостн (табл. 1) не превышает 5 мм. Более глубокий прогрев целесообразен лишь для высоколегированных сталей. Закалка на глубину менее  [c.16]

Закалк.ч Т1 Ч углеродистых и легированных сталей Азотирование при глубине слоя 0,4 мм Цементации толщине слоя (),() мм  [c.328]

При поверхностной закалке деталь изготовляется из среднеуглеродистой стали. Вначале для придания окончательных свойств сердцевине всю деталь нормалируют или улучшают, а затем упрочняемому месту дают поверхностную закалку на глубину до 2 м. Нагрев под закалку производят чаще всего индуктором, имеющим форму контура упрочняемой поверхности и питающимся током высокой частоты. За очень короткое время обрабатываемая поверхность прогревается до аустенитного состояния на требуемую глубину, после чего охлаждается струями воды. После поверхностной закалки деталь проходит низкий отпуск.  [c.38]

Технические условия на поверхностную закалку индукционным способом должны гарантировать необходимую работоспособность детали и удобный контроль соответствия с ними фактических результатов термообработки. Они должны включать задание размеров и расположения закаленной зоны с допустимыми отклонениями, глубину закаленного слон, твердость поверхности. В технических условиях также могут быть особо оговорены максимальные пределы деформации, ограничения рихтовки, распространение цветов побежалости, допустимые дефекты в зоне закаленного слоя и др. Технические условия назначаюгся с учетом свойств выбранной марки стали и задают также предшествующую термическую обработку детали, твердость перед закалкой, допустимую глубину переходной зоны разупрочнения исходной структуры (после термического улучшения). При этом учитывается, что граница закаленного слоя и.ч цилиндрической поверхности ие может быть приближена к широкой выступающей торцовой части (к щеке коленчатого вала) менее чем на 6— 10 мм, что дополнительно уточняется после закалки опытной партии. Закалка ие может быть распростраиеиа на участок поверхности с близко расположенными друг к другу отверстиями или широкими одиночными окнами, вырезами, существенно суживаю-1ЦИМИ зону протекания индуктированного тока. Детали инструментального производства, тонкостенные и асимметричные, деформация и неравномерный нагрев которых делают индукционный нагрев неприемлемым, следует перевести на химикотермическую обработку.  [c.4]


Исследование твердости образцов, закаленных по описанному режиму, показало (в соответствии с отметками У и 3 на рис. 8,6), что глубина закаленного слоя равна 4 мм с переходным слоем 2,5 мм т. е. исходная твердость образца в сердцевине сохранена, начиная с 6,5 мм от поверхности. Выбором закалочной жидкости (вода техническая умягченная, вода с добавками органических полимеров и т. п., нодовоздушная смесь, масло) и способа ее подачи (душ, поток, сокойное состояние) можно в широких пределах регулировать скорость охлаждения поверхности. Тем самым можно изменить скорость охлаждения для предотвращения трещин в шлицах, па.зах, отверстиях и выточках. Режим охлаждения имеет особенно важное значение при закалке легированных сталей. Закалка в масло не всегда удобна и небезопасна в пожарном отношении. Ярославским моторным заводом успешно введена в практику закалка водным раствором полиакриламида ТУ6-01-1040—76 [3]. Известно также применение различных патентованных средств, таких, как аква-пласт (ГДР) османил (ФРГ).  [c.14]

Прижоги и шлифовочные трещины характерны для цементированной или азотированной поверхности. Для сталей, цементированных на глубину 1,3 мм, с концентрацией углерода на поверхности 1,2% установлена пропорциональная зависимость между толщиной стружки за один проход и показаниями амплитудно-фазового дефектоскопа ДНМ-500. Для изучения влияния шлифовки цементированной поверхности использовались клинья из стали 18ХНВА. Бруски цементировались при температуре 950°С в твердом карбюризаторе (13% ВаСОз). После цементации они проходили высокий отпуск (/=650 °С, выдержка 3 ч), закалку (при /=780°С, охлаждение в масле), низкий отпуск (при /=170° С, охлаждение на воздухе) и затем шлифовались под наклоном. Характерные зависимости, полученные при испытаниях этих клиньев, показаны на рис. 7-18.  [c.144]

В строительно-дорожном и в подъемно-транспортном машиностроении для шкивов тормозов и фрикционных муфт находит применение сталь 35Л, сталь 55Л и сталь ЗОГЛ и чугун следующих марок СЧ 1.5-32, СЧ18-36, СЧ21-40, СЧ28-48 и СМ.32-52. На заводах подъемно-транспортного оборудования применяют закалку рабочей поверхности тормозных шкивов, отлитых из стали 55Л на глубину 3—4 мм с высокочастотным электронагревом [172]. Для избежания коробления применяют охлаждение закаливаемой зоны с внутренней стороны. Стойкость таких шкивов увеличивается в 5—6 раз по сравнению со шкивами без термообработки.  [c.572]

Наименование детали Марка стали Охлаждающая среда Глубина закален- ного слоя в мм Способ закалки Температура отпуска в °С Твер- дость ИЦС Использованная частота тока в гц  [c.95]

Под прокаливаемостью понимается способность стали принимать закалку, измеряемая глубиной мартенситной или троостомартенсит-ной зоны в закалённой стали.  [c.286]

Кислородная резка не вызывает перегрева н пережога кромки разреза. Горячие окислы железа расплавляют и смывают слой неокисленного металла, оставляя поверхность чистой стали. Поверхностный слой глубиной 2—5 мм подвергается нормализации или в случае резки закаливающейся стали — закалке.  [c.205]

Влияние углерода и исходной структуры металла на упроч-няемость поверхностного слоя. В обычных условиях увеличение температуры закалки конструкционных сталей выше точки Асз может привести к получению крупнозернистого аустенита после охлаждения. При ЭМО опасность перегрева не имеет такого значения, так как время выдержки ничтожно мало. Кроме того, можно предположить, что при ЭМО, несмотря на высокую скорость нагрева и мгновенную выдержку, однородность аустенита обеспечивается также и за счет механического измельчения структуры поверхностного слоя. При обработке крупнозернистой доэвтектоидной стали на некоторой глубине от поверхности, где температура ниже точки Асз, в зоне пониженных давлений и деформаций в процессе превращения могут оказаться нерастворенные зерна феррита.  [c.24]

В табл. 22 приведены примеры использования поверхностной закалки при индукционном нагреве для упрочнения деталей металлорежущих станков н автомобилей. Некоторые шестерни заднего моста автомобиля (например, коническая ведомая и ведущая шестерни редукторов заднего моста) изготовляют из стали 55ГШ (см. с. 223) и упрочняют поверхностной закалкой при глубинном индукционном нагреве (автомобили ГАЗ, ЗИЛ).  [c.336]

Хромистые (15Х, 20Х) и хромованадиевые (15ХФ, содержит 0,15% У) стали цементуются на глубину до 1,5 мм. Легирование ванадием уменьшает склонность стали к перегреву. После закалки (880 °С, вода, масло) и последующего отпуска (180 °С, воздух, масло) стали имеют следующие свойства а, = 690—800 МПа, 5 = 11—12%, КСП = 0,62 МДж/м1  [c.159]

Поверхностной и объемной индукционной закалке с последующим низким отпуском подвергают зубчатые колеса малых и средних размеров из сталей с содержанием углерода 0,4 - 0,5 %. Для контурной поверхностной закалки на глубину (0,20 - 0,25) m используют стали 40, 45, 50Г, 40Х, 40ХН и др. Сердцевина при этом не закаливается и остается вязкой. По нагрузочной способности эти стали уступают цементуемым сталям.  [c.339]

При осуществлении поверхностного нагрева стали для поверхностной закалки необходимо применять сравнительно большую удельную мощность, примерно в пределах от 0,5 до 2,0 кВт/см , и сравнительно малое время нагрева — от 2 до 10 с. При этом скорость нагрева лежит в пределах 30—300° С/с, Повышение частоты содействует получению более тонкого нагретого слоя. Однако уже на частотах звукового диапазона (2000—8000 Гц) можно производить поверхностный нагрев и закалку на глубину 1—2 мм. Снижение применяемой удельной мощности и увеличение времени нагрева обусловливает получение более глубокого нагрева. При необходимости получения сквозного нагрева (например, для ковли и штамповки, а также для объемно-поверхностной закалки) надо применять небольшую удельную мощность, составляющую 0,05—0,20 кВт/см , и довольно продолжительное время 30—200 с, в зависимости от диаметра или толщины детали или заготовки. При этом скорость нагрева лежит обычно в пределах 2—10° С/с. Рекомендации для выбора удельной мощности даны ниже (см. с. 266),  [c.248]


Наиболее высокие показатели эрозионной стойкости образцов стали 40ХН были получены после азотирования и последующей индукционной закалки (рис. 148). Азотирование выполняли по режиму, указанному выше, на глубину 0,25—0,30 мм. После азотирования образцы подвергали индукционной закалке на глубину 2—3 мм благодаря этому азотированный слой делается менее хрупким, что способствует по вышению его стойкости к микро-ударному разрушению.  [c.262]

Микролегирование позволяет стабилизировать величину про-каливаемости или ее строго регламентировать, что имеет особое значение при использовании скоростных нагревов с широким интервалом температур аустенитизации (ТВЧ, лазерный, плазменный нагрев и пр.). Хорошо зарекомендовали себя в этом отношении стали типа 47ГТ или ШХ4РП, микролегированные титаном для поверхностной закалки при глубинном нагреве осей, автотракторных и железнодорожных подшипников.  [c.423]

Одновр.еменный способ. Он применяется для закалки небольших деталей и осуществляется следующим образом. Закаливаемая деталь 1 (рис. 33, а) помещаетвя в индуктор 2, высота которого должна быть равна или больше размера обрабатываемого участка детали. На заданное время включается ток, затем деталь подвергается охлаждению в устройстве 3 (спрейер). Для того чтобы получить твердость, равномерную по всей поверхности, деталь в индукторе — при нагреве и при охлаждении— должна непрерывно вращаться, так как в месте присоединения токопроводящих шин к кольцу индуктора нагрев получается более слабым и равномерность распределения твердости может нарушиться. Одновременный способ успешно применяют в новом методе поверхностной закалки при глубинном нагреве деталей, изготовленных из сталей пониженной и регламентированной прокаливаемости.  [c.56]

Такой метод поверхностной закалки основан на том, что ацетилено-кислородное пламя имеет температуру 3100—3200° С и благодаря чрезвычайно большому тепловому давлению нагревает поверхность изделия до температуры закалки за очень короткий промежуток времени, в течение которого нижележащие слои стали не успевают прогреться до критической точки и потому не закаливаются. Скорость движения горелки ограничивается определенными условиями и при закалке на глубину 4—6 мм составляет от 50 до 150 mmImuh. Расстояние между горелкой и водяным душем — от 5 до 40 мм.  [c.151]

Термическая обработка коленчатого вала автомобиля. Коленчатый вал автомобиля преимущественно изготовляется из углеродистой стали 45. Заготовка в виде поковки подвергается нормализации с нагреванием до 850°С и охлаждением на воздухе в результате нормализации поверхностный слой вала имеет твердость Нц =200—229 . Структура сердцевины состоит из перлита и феррита эта структура обладает высокой циклической вязкостью, что при работе вала повышает сопротивление усталости. Термическая обработка шеек производится после их окончательной обточки и отшлифования с припуском на полирование после термической обработки. Термическая обработка шеек вала производится нагреванием токами высокой частоты в течение 3—4 сек до оптимальной температуры ВбО С с последующим охлаждением водой в результате закалки получается структура мартенсита закалки на глубину 2—3 мм. После такой закалки вал подвергается отпуску нагреванием в камерной печи при 200°С в течение двух часов. В последнее время успешно применяется самоотпуск за счет сокращения времени охлаждения шеек для закалки.  [c.99]

Поверхностный нагрев пламенем газовой горелки. Поверхностная закалка стали путем пламенного нагрева заключается в том, что поверхность детали нагревают пламенем перемещающейся аце-тилено-кислородной горелки до температуры выше критической точки и быстро охлаждают струей холодной воды (рис. 62). Ацетилено-кислородное пламя имеет температуру 3100—3200° С и очень быстро нагревает поверхность изделия до температуры закалки. Нижележащие слои стали не успевают прогреться до критической точки и потому не закаливаются. Скорость движения горелки ограничивается определенными условиями и при закалке на глубину 4—6 мм равна от 50 до Ъ0 мм/мин. Расстояние между горелкой и водяным душем от 5 до 40 мм.  [c.128]


Смотреть страницы где упоминается термин Сталь Закалка — Глубина : [c.223]    [c.29]    [c.30]    [c.183]    [c.81]    [c.695]    [c.270]    [c.223]    [c.133]    [c.161]    [c.262]    [c.262]    [c.358]    [c.544]    [c.981]   
Чугун, сталь и твердые сплавы (1959) -- [ c.233 ]



ПОИСК



Глубина

Закалк

Закалка

Сталь - Глубина сверления 788 - Обеспечение конструкционной прочности при термической обработке 369 Обрабатываемость 202 - Поверхностная закалка при

Сталь - Глубина сверления 788 - Обеспечение конструкционной прочности при термической обработке 369 Обрабатываемость 202 - Поверхностная закалка при газопламенном нагреве 372 - Поверхностная закалка при

Сталь - Глубина сверления 788 - Обеспечение конструкционной прочности при термической обработке 369 Обрабатываемость 202 - Поверхностная закалка при индукционном нагреве 372 - Полирование 252, 253 Режимы лезвийного резания 127, 128 - Режимы резания

Сталь - Глубина сверления 788 - Обеспечение конструкционной прочности при термической обработке 369 Обрабатываемость 202 - Поверхностная закалка при инструментами из ПСТМ 592 - Режимы резания при

Сталь - Глубина сверления 788 - Обеспечение конструкционной прочности при термической обработке 369 Обрабатываемость 202 - Поверхностная закалка при тонком растачивании 786 - Скорость резания при нарезании резьбы в отверстиях корпусных деталей 792 - Ультразвуковая обработка

Сталь Закалка



© 2025 Mash-xxl.info Реклама на сайте