Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полимерная форма

До сих пор известно немного соединений протактиния, состав которых установлен точно. Тому есть причины, и главная из них — склонность очень многих соединений элемента № 91 к гидролизу. В водной среде они существуют в самых разнообразных формах — ионных, коллоидных, полимерных. Форма нахождения протактиния в растворе зависит не только от начального состава раствора, но и от того, каким способом и как давно этот раствор приготовлен.  [c.70]

Чтобы избежать образования полимерной формы, предложен способ приготовления электролита, включающий химическое восстановление хлорида родия формиатом натрия до родиевой черни, спекание последней с пероксидом бария и растворение измельченного спека в серной кислоте в присутствии восстановителя с последующим отделением сульфата бария и обработкой раствора активированным углем. Из электролита, приготовленного таким способом, получаются качественные покрытия. Однако небольшие отклонения от заданного режима приготовления приводят к неудовлетворительному результату.  [c.291]


Изготовление такой оснастки начинается с изготовления деревянной мастер-модели, по которой затем отливают гипсовую форму. В качестве мастер-модели можно использовать имеющиеся модели ручной или машинной формовки. Для этого их нужно тщательно осмотреть, изношенные и поврежденные места заделать гипсом. Важно, чтобы мастер-модель была точной по размерам и имела чистую поверхность, так как любые дефекты поверхности, даже отпечатки щетки, воспроизводятся на негативной форме. Желательно, чтобы мастер-модель была очень простой конструкции, а отдельные ее части, например трубы и фланцы, изготовлялись отдельно и затем соединялись при помощи резьбы. Поверхность мастер-модели, соприкасающаяся с подмодельной плитой, должна быть увеличена по высоте на 3 мм. Этот припуск снимается затем механической обработкой на станках, что обеспечивает точность размеров и удаление из полимерной формы воздушных пузырьков, которые при изготовлении поднимаются к поверхности. Кроме того, вследствие усадки верхняя часть формы обычно немного оседает и приобретает несколько неправильную форму.  [c.161]

ПОЛИМЕРИЗАЦИЯ, процесс превращения вещества в полимерную форму, см. Полимерия.  [c.126]

В ответственных быстроходных передачах венец червячного колеса изготовляют из антифрикционных материалов (бронза, латунь). Если колесо имеет значительный диаметр, то в целях экономии цветных металлов ступицу и диск колеса выполняют из чугуна или стали. Соединение зубчатого венца со ступицей и диском осуществляется винтами (рис. 414), болтами или в пресс-формах, если ступица колеса выполнена из полимерных материалов (пластмассы).  [c.232]

В зависимости от формы макромолекул полимерные соединения подразделяются на линейные, разветвленные а) И сетчатые (пространственные) (рис.  [c.338]

В наш век с усложнением форм строительных конструкций, появлением авиастроения, разнообразными запросами машиностроения роль методов теории упругости резко изменилась. Теперь они составляют основу для построения практических методов расчета деформируемых тел и систем тел разнообразной формы. При этом в современных расчетах учитываются не только сложность формы тела и разнообразие воздействий (силовое, температурное и т. п.), но и специфика физических свойств материалов, из которых изготовлены тела. Дело в том, что в современных конструкциях наряду с традиционными материалами (сталь, дерево, бетон и т. д.) широкое применение получают новые материалы, в частности композиты, обладающие рядом специфических свойств. Так, армирование полимеров волокнами из высокопрочных материалов позволяет получить новый легкий конструкционный материал, имеющий высокие прочностные свойства, превосходящие даже прочность современных сталей. Но наличие полимерной основы наделяет такой композитный материал помимо упругих вязкими свойствами, что обязательно должно учитываться в расчетах. Даже в традиционных материалах в связи с высоким уровнем нагружения, повышенными температурами возникает необходимость в учете пластических свойств. Все эти вопросы теперь составляют предмет механики деформируемого твердого тела.  [c.7]


При постоянном модуле упругости импульс напряжений может распространяться на значительное расстояние без изменения формы, изменение модуля упругости приводит к искажению импульса напряжений конечной амплитуды. Для большинства деформируемых тел уменьшается за пределом упругости и в материале при достаточно больших деформациях возникают пластические волны, распространяющиеся со скоростью, меньшей скорости распространения упругой волны. Однако существуют такие деформируемые тела (резины, полимерные материалы), в которых большие деформации приводят к ориентации длинных молекулярных цепочек, что вызывает возрастание модуля упругости . Поэтому при распространении возмущений в таких материалах зарождаются волны особой природы, называемые ударными волнами. В деформируемых телах ударные волны возникают и в том случае, когда распространяются волны расширения большой амплитуды. Как показано Бриджменом, зависимость между средней деформацией е и средним напряжением а в твердых телах может иметь вид е = (—аа + Ьо )/3, где а, Ь — постоянные величины. Модуль объемного сжатия К при малых давлениях стремится к постоянной 1/а, при высоких давлениях принимает значение 1/(а — 2Ьа) (т. е. при высоких давлениях К растет). Упругие волны расширения распространяются со скоростью а , но модуль К при высоких давлениях возрастает, это приводит к тому, что скорость волны большой амплитуды больше скорости волны малой амплитуды. В результате образуется ступенчатый фронт, характерный для ударной волны. Модуль сдвига G в этом случае играет незначительную роль, так как задолго до достижения достаточно высокого давления предел текучести будет пройден и материал ведет себя подобно жидкости.  [c.38]

Стеклотекстолиты получаются из стеклянной ткани, которая пропитывается полимерной смолой — эпоксидной, полиэфирной или какой-либо иной. Куски этой ткани укладываются в форму, смола полимеризуется тем или иным способом. Таким образом, можно получить очень просто сложные изделия типа тонкостенных оболочек для изготовления деталей кузова автомобиля, например, нет необходимости в дорогостоящих сложных штампах и мощном прессовом оборудовании, пропитанная смолот стеклоткань может выкладываться на деревянную или гипсовую форму. Разрушение стеклотекстолитов начинается с того, что хрупкая матрица трескается в местах перегиба нитей, образующих  [c.684]

Область применения этих испытаний ограничена в основном композитами с полимерной матрицей [8—10]. Отдельное волокно заделывается аксиально в материале матрицы. В зависимости от подлежащей определению характеристики образец может иметь различную форму. Для измерения прочности перпендикулярно поверхности раздела сжимающее усилие прикладывают к образцу с криволинейной шейкой (рис. 21, а). Для определения прочности при сдвиге сжимающее усилие прикладывают к образцу постоянного сечения или к образцу трапециевидного профиля (рис. 21,6).  [c.72]

Свойства бериллия также исследовались для определения возможностей его использования в качестве волокнистого армирующего материала для композитов с полимерной матрицей, если он сам имелся в достаточном количестве в форме пластичной проволоки. Высокий модуль (на 40% больше, чем у стали) и низкая плотность (на 30% меньше, чем у алюминия) сделали его привлекательным конструкционным материалом для авиации, и можно было надеяться, что пластичность проволок улучшит ударные свойства композита. В работе [62] опубликованы некоторые результаты по растяжению бериллиевой проволоки диаметром 0,005 дюйм. Она разрушалась вязко даже при комнатной температуре после удлинения примерно на 1—3%. Позднее [36] исследован более детально предел упругости проволоки и определено ее остаточное удлинение при различных уровнях нагружения. Кроме того, исследованы также свойства длительной прочности проволоки при комнатной температуре. Данные показывают уменьшение прочности с ростом продолжительности действия нагрузки, однако результаты имеют большой разброс.  [c.278]


Способность полимерной цепи к конформационным превращениям делают эту цепь исключительно гибкой, способной практически принимать. любую форму.  [c.34]

Эта эффективная добавка представляет собой привитый сополимер, образованный взаимодействием, по крайней мере одного полимеризован-ного винильного соединения в мономерной или полимерной форме с гидрированным полимером или сополимером, например, гидрированными гомополимерами сопряженных диенов содержащих от 4 до 6 атомов углерода гидрированными сополимерами, хотя бы двух сопряженных диенов и гидрированными сополимерами стирола и сопряженными диенами, содержащими от 4 до 6 атомов углерода гидрированным полимером  [c.161]

Карбонилы хрома, молибдена, вольфрама. Установлено, что фрагменты М(С0>5 имеют симметрию (пирамидальная), так какчис-ло наблюдаемых в спектрах полос (три) и их сдвиги при использовании изотопозамещенных молекул ( С и 1 0) соответствуют этой структуре. Альтернативная структура с симметрией (тригональ-но-бипирамидальная) должна быть исключена, поскольку для ее обоснования ошибочно использованы ИК-полосы присутствовавших примесей или полимерных форм.  [c.156]

Эту группировку атомов можно назвать к а у-чукофором. Процесс получения С.к. поэтому распадается на следующие две операции 1) синтез веществ, имеющих в молекуле кау-чукофор (обычно это углеводороды, но в последнее время внимание исследователей стали привлекать производные этих углеводородов, например вещества, содержащие хлор или эт-оксильную группу—О-С НО и 2) превращение этих веществ в высокомолекулярные полимеры, или полимеризация. Строение полимерных форм С. к. в значительной степени разъяснено изучением действия на них озона (метод Гарриеса) и обследованием продуктов, получающихся при распаде озонидов. Различают два типа полимеров (каучуков) нормальные и анормальные. Первые получаются в результате самопроизвольной полимеризации при комнатной или при нагревании—обычно в пределах 504-150°. Их строение аналогично строению природного каучука. Для изопрена напр, строение нормального полимера таково [-СНо—С СН-СНз—СНа—С=сн—СНа—  [c.415]

Если представить в такой форме данные для полимерных ja TBopOB, то возникает вопрос о подходяш ем определении числа ейнольдса, поскольку вискозиметрическая вязкость этих растворов обычно зависит от скорости сдвига. Обычно используют такое определение числа Рейнольдса, при котором справедлива корреляция для ламинарного течения полимерного раствора [26], ука-зываюш ая на отсутствие снижения сопротивления при числах Рейнольдса ниже 2100 (переход к турбулентному режиму никогда не наблюдается при значениях, меньших 2100). В действительности падение давления при ламинарном течении раствора более высокое, чем при течении с той же расходной скоростью чистого раство-  [c.281]

Внутри каждой in3 перечисленных груип композиционные материалы можно классифицировать различными способами по виду материала компонентов, их размерам, форме, ориентировке, а также по назначению или методу получения. Например, волокнистые материалы по виду матрицы делят на металлические, полимерные и керамические по виду волокон —на материалы, армированные проволокой, стеклянными, борными, углеродными, керамическими и другими волокнами или нитевидными кристаллами по размерам волокон — на материалы с непрерывными или короткими (дискретными) волокнами по ориентировке волокон — на материалы с однонаправленными или ориентированными в двух и более направлениях волокнами.  [c.635]

Синтегран перспективный материал, относящийся в разряду полимерных бетонов и состоящий из щебня (нескольких размеров частиц) и порошка высокопрочных гранитов и синтетического эпоксидного связуюпхего не более 10 %. Основные свойства сохранение высокой точности, высокое демпфирование, технологичность (изготовляется виброуплотнением в форме) прочность на изгиб  [c.43]

Широкое распространение приобрели так называемые пленочные поляризаторы (поляроиды), созданные в 20-х гг. нашего столетия. Если полимерную пленку, состоящую из длинных линейных. макромолекул, в нагретом и размягченном состоянии подвергнуть механическому растяжению в определенном направлении, то молекулы полимера ориентируются длинными осями вдоль направления растяжения и плепка становится анизотропной. Если при этом в полимере растворено вещество, молекулы которого анизотропны по форме (лучше всего, если они тоже линейны) и обладают высоким дихроизмом, то упорядоченная среда макромолекул полимера, образующаяся при растяжении, ориентирует эти примесные молекулы. Пленка становится поляризатором света. Таким способом получают поляроиды высокого качества (степень поляризации прощедшего света — 99,99 %) и достаточно большого размера с угловой апертурой, равной 180°.  [c.39]

Так, образцы пластмасс, керамики, цемента и других материалов для исггытания на разрыв должны изготовляться в виде восьмерок с расширенными концами и суженной серединой, по которой происходит разрыв. Размеры образцов из пластмасс даны на рис. 8-5. В случае испытания образцов, изображенных на этом рисунке, значение Ор вычисляют делением разрушающего усилия при разрыве на наименьшую площадь поперечного сечения образца (в середине шейки), измеренную до приложения к образцу нагрузки. Так, для образца на рис. 8-5 площадь наименьшего сечения равна, очевидно, 25 X 6 = 150 мм = 1,5-10 м . Образцы полимерных пленок толщиной не более 1 мм должны иметь форму прямоугольных полосок шириной 10—25 мм и длиной 150 мм. Полоски вырезают как в направлении вытяжки, так и в перпендикулярном направлении. Число образцов каждого вида должно быть не менее пяти. Эта цифра указывается в соответствующем стандарте на материал.  [c.153]

Многие твердые тела при нагревании за счет понижения вязкости приобретают апособность деформироваться под влиянием приложенной сравнительно небольшой механической нагрузки. Большое значение имеет эта особенность поведения для полимерных материалов. Одним из весьма распространенных параметров, характеризующих способность материала сохранять форму при нагреве и механических нагрузках, является теплостойкость по Мартенсу. Схема прибора для определения этого параметра показана на рис. 1-16. Принцип определения теплостойкости по Мартенсу заключается в опред(У1ении температуры (при постоянной скорости ее подъема), при которой указатель прогиба покажет 6 мм (это условное значение прогиба принято как стандартное).  [c.24]

Крепление образца в захватах. Создание на основе высокопрочных армирующих волокон полимерных композиционных материалов порождает значительные трудности получения стабильных значений предела прочности при растяжении этих материалов 39]. Особенно они проявляются при испытании трехмерноармнрованных материалов, изготовленных на основе углеродных волокон. Опытные данные и характер разрушения образцов свидетельствуют о том, что сложность получения стабильных и воспроизводимых характеристик прочности при растяжении композиционных материалов обусловливается главным образом необ.ходимостью надежного крепления образца в захватах испытательной машины (для исключения проскальзывания), а также влиянием формы и размеров образца. Учет этих факторов особенно необходим при испытании высокопрочных композиционных материалов. Проскальзывание образца в захватах приводит к появлению па его поверхности царапни, сколов и вмятин. Повторное нагружение образца после проскальзывания часто усугубляет эти дефекты н способствует разрушению образца в местах повреждения 23, 74]. Во избежание указанного явления используют различные дополнительные приспособления или устройства, которые усложняют  [c.26]


Для серебрения форм из полимерных матер и а лов применяют концентрированные растворы содержащие 60 г/л нитрата серебра и 70 мл/л 25 %-ной гидроокиси аммония В качестве восстановителя используется раствор, содержащий 100 г/л глюкозы и 65 мл/л 40 % ного раствора формалина По приведенным данным максимальная величина сцепления пленки серебра с материалом изделия получается при использовании глюкозы минимальная — с формалином с сегнетовой солью величина сцепления имеет промежуточное значение  [c.83]

Несмотря на то, что количественные критерии, определяющие как вязкое, так и хрупкое разрушение композиционных материалов при комбинированном нагружении, еще далеки от завершения, состояние этого вопроса достигло такого уровня, при котором возможно достаточно точно предсказать поведение проектируемых или рассчитываемых конструкций, если известны основные характеристики композиционного материала. В отличие от металлов слоистый композиционный материал обладает такими особенностями, как неоднородность и анизотропия. По микроструктуре материал является двухфазным и состоит из волокон и матрицы или связующего (полимерного, металлического и др.), а макроструктура материала образуется из ориентированных слоев волокон, заключенных в связующем (рис. 3). Явления, протекающие на микроуровне, определяют формы разрушения и другие подобные характеристики материала, рднако механизм и взаимодействие этих явлений изучены еще недостаточно полно. Большинство инженерных расчетов основано поэтому на макромодели, согласно которой основным элементом материала, в котором происходит разрушение, является армированный слой.  [c.67]

Заполнитель может иметь самые разнообразные конструктивные формы, некоторые из которых показаны на рис. 15. Первые образцы трехслойных панелей, использовавшиеся в авиации, в частности в конструкции английского бомбардировщика времен второй мировой войны Ди Хевилленд Москито , имели заполнитель из бальзы, а несущие слои из фанеры. Иногда в качестве заполнителя используют пенополиуретан, имеющий хорошие демпфирующие и теплоизоляционные свойства. В настоящее время наиболее распространенным является сотовый заполнитель, который применяется, например, в пандалях серийных самолетов В-58, В-70, В-111, в лопастях вертолетов, в космическом корабле Аполлон. Фигурный заполнитель, показанный на рис. 15, в, был разработан с целью получения одинаковых свойств в двух ортогональных направлениях. Широко известен гофрированный заполнитель, применяющийся в картонных коробках. Новой формой заполнителя является так называемый гипар [79] (сокращение слов — гиперболический параболоид). Заполнители изготовляют из полимерных материалов, алюминия, титана, стали или из композиционных материалов.  [c.198]

В работе [9] также отмечены максимумы изменения энергии разрушения двух других полимерных систем, а именно эпоксидная смола — стекло и полиэфирная смола — стекло. Авторы [91 показали, что энергия разрушения зависит от степени связи по границе раздела стеклянных шариков и полимерной матрицы. Степень этой связи изменялась перед изготовлением композита путем предварительной обработки стеклянных шариков различными способами. Наибольшие значения энергии разрушения были получены при предварительной поверхностной обработке шариков составом, который применяется для облегчения выемки изделия из формы, что приводило к наиболее слабой связи по поверхности раздела. При увеличении прочности межфазных связей другими составами были получены более низкие величины энергии разрушения. На рис. 7 приведены аналогичные результаты для системы эпоксидная смола — стекло. Авторы [9] объяснили эти результаты образованием большей плогцади поверхности вследствие нарушения связи стеклянных шариков с матрицей в процессе возникновения треш ины.  [c.25]

Для кабелей связи ввиду особенностей их конструктивной формы и условий эксплуатации требуются некоторые мероприятия, отличающиеся от мероприятий по защите трубопроводов от коррозии. Все кабели телефонной и телеграфной связи имеют в соответствии с нормалью VDE 0816 либо совершенно герметичную металлическую оболочку вокруг сердечника, либо (если эти кабели выполнены целиком из полимерного материала) металлическую ленту для электрического экранирования [1, 2]. У кабелей с защитной оболочкой из джута и жидкотекучей массы над металлической оболочкой переходное сопротивление на землю значительно меньше, чем у кабелей с полимерной оболочкой. На центральных телефонных станциях или усилительных подстанциях металлические оболочки или экраны соединяют с эксплуатационным заземлителем, чтобы улучшить экранирующее действие оболочек кабеля и уменьшить переходное сопротивление на землю эксплуатационных заземлителей. Еще несколько лет назад применяли преимущественно кабели с металлической оболочкой. При наличии опасностн коррозии для таких кабелей необходимо было предусматривать катодную защиту. Современные кабели слоистого типа с полимерной защитной оболочкой в катодной защите от коррозии в общем случае не нуждаются.  [c.297]

Однако имеются сведения, что при изготовлении пресс-форм для полимерных материалов лучше иметь в поверхностном слое FeB. Получение только одной боридной фазы спососбствует устранению остаточных напряжений и дает однородную поверхность. В этих случаях под боридной фазой обычно образуется буферный слой высокой твердости, который способствует повышению ударной вязкости. При одинаковых условиях фаза FeB образуется интенсивнее в средне- и высокоуглеродистых сталях по сравнению с низ-коуглеродистыми сталями.  [c.46]


Смотреть страницы где упоминается термин Полимерная форма : [c.81]    [c.96]    [c.200]    [c.75]    [c.491]    [c.5]    [c.141]    [c.127]    [c.450]    [c.420]    [c.423]    [c.465]    [c.283]    [c.303]    [c.140]    [c.416]    [c.214]    [c.612]    [c.156]    [c.288]    [c.370]    [c.253]    [c.102]   
Техническая энциклопедия Том17 (1932) -- [ c.250 ]



ПОИСК



Полимерная форма 250, XVII

Прочность полимерных композитов с наполнителями сферической формы



© 2025 Mash-xxl.info Реклама на сайте