Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ олова

Нами исследованы сплавы доэвтектического и заэвтектического состава, выплавленные в графитовых или стальных тиглях на базе чистого висмута (96,0% В ) и чистого для анализа олова (99,9% 5п). Сплавы перегревали на град выше ликвидуса и охлаждали в печи со скоростью 2 град мин. Применяли также ускоренное охлаждение и закалку сплавов в ходе затвердевания в растворе соли при —15°.  [c.107]

И ОЛОВО, которые, видимо, не изменяют поведение титана, находясь в твердом растворе. Типичными представителями второй группы являются медь и германий, играющие роль разбавителей, т. е. в их присутствии эффективная концентрация титана уменьшается пропорционально количеству легирующего элемента а твердом растворе. Идеальный разбавитель должен уменьшать константу скорости реакции линейно от 5,2-10 см/с здо нуля при снижении до нуля концентрации титана в сплаве другими словами, удельная константа скорости реакции должна быть равна —0,052-10 (см/с /2)/ат.%. С увеличением в сплаве концентрации алюминия, молибдена или ванадия скорость реакции уменьшается значительно сильнее, чем для разбавителей. Эти элементы образуют третью группу. Из анализа данных табл. 3 следует, что ванадий эффективнее тормозит реакцию взаимодействия в разбавленных растворах, чем в концентрированных. На рис. 16 показано влияние различных типов легирующих элементов на константу скорости реакции при 1033 К. Экспериментальная кривая для сплавов титан — ванадий иллюстрирует влияние концентрации на константу скорости. Из этих результатов были рассчитаны удельные константы скорости реакции, отнесенные к весовым процентам. Они оказались равными для ванадия —0,32-10- , алюминия —0,14-10- , молибдена —0,17-Ю- (см/с 2)/вес.%.  [c.113]


Хотя, как правило, лишь в исключительно редких случаях разрушение происходит из-за несоответствия марки материала указанной в чертеже, проведение химического анализа все же необходимо при этом следует обратить внимание на содержание вредных примесей, а в ряде случаев газов. Например, по-вышенное содержание в никель-хромовых жаропрочных сплавах свинца, висмута, олова, сурьмы приводит к резкому падению жаропрочности, повышенное содержание водорода в стали и титановых сплавах — к увеличению хрупкости, склонности к замедленному разрушению.  [c.177]

Наряду с методом нейтронно-активационного анализа для изучения распределения олова в слоях стекломассы использовался метод измерения показателя преломления слоев, содержащих различное количество олова.  [c.212]

Методом секционирования с применением нейтронно-активационного анализа и методом показателя преломления исследовано распределение олова в зоне контакта стекломассы состава прокат с расплавами олова и сплавов на его основе в газовой среде с различным окислительным потенциалом в интервале температур 900—1100 С. Анализ кривых распределения олова для различных условий диффузионного отжига показал, что в присутствии касситерита на меж-фазной границе проникновение олова в стекломассу ограничивается растворимостью двуокиси олова в стекломассе данного состава, а в восстановительной газовой среде — окислительным потенциалом среды. Влияние примесей в металлической ванне на диффузионные процессы в этой системе также определяется восстановительно-окислительным равновесием в системе окислы олова — примеси металла. Табл. 2, рис. 4, библиогр. 15.  [c.232]

Используя электролит № 3, удалось получить качественные никелевые покрытия, не содержащие примесей. Реакция начиналась с pH раствора, равного 8,1 при увеличении pH до 10,5 наблюдалось некоторое возрастание скорости осаждения, однако покрытия получались более темные, матовые. В процессе осаждения необходимо корректировать pH раствора путем добавления раствора аммиака рекомендуемая температура осаждения 70— 95° С, при этом скорость осаждения составляет —0,02 мкм/мин и мало изменяется во времени. Химическим анализом показано отсутствие в покрытии серы, олова и палладия. Спектральным анализом установлены следы железа, алюминия, меди и кальция, что связано, по-видимому, с недостаточной чистотой использованных реактивов.  [c.186]

Чувствительность подобной оценки определяется соотношением размеров атома легирующего элемента и атома меди и особенно ярко проявляется при анализе латуней (/"zn = 1,37 А), бронз, легированных оловом (rsn= 1,58 А), алюминием (га1 =  [c.23]


В присутствии Fe свыше 0,25—0,30/о определение олова производят, как при анализе бронзы.  [c.111]

Определение олова. Анализ производится иодометрическим методом (см. Анализ бронзы") .  [c.113]

Структурный анализ материала вкладышей позволяет установить наличие зерен меди, в которых растворены олово и свинцовые включения. Сравнение профилограмм рабочих поверхностей новых вкладышей и отработанных в режиме абразивного изнашивания на двигателе 120 ч позволяет отметить  [c.67]

Хлористое олово легко окисляется на воздухе, поэтому следует хранить его под слоем вазелинового масла. Для массовых анализов следует готовить сразу 250 или 500 мл (готовить 2 раза по 250 мл) хлористого олова.  [c.169]

Конкретный пример построения диаграммы состояния для системы олово — цинк с анализом ее фазового и структурного составов представлен на рис. 18. Компоненты данной системы неограниченно растворимы друг в друге в жидком состоянии, а в твердом — нерастворимы и образуют легкоплавкую эвтектику.  [c.55]

Процесс рекристаллизации, как указывалось, связан с перемещением границ зерен. Введение примесей, особенно в небольших количествах, существенно влияет на рекристаллизацию, обычно затрудняя ее (задерживая миграцию границ). В работе [59] изучалось положение атомов матрицы и примеси (замещения и внедрения) на границах зерен в процессе рекристаллизации. Для этой цели была разработана методика [178], позволившая с помощью авторадиографии и металлографического анализа наблюдать за одним и тем л<е зерном. Было исследовано положение границ зерен при рекристаллизации чистых железа, никеля, молибдена, а также при наличии на границах зерен железа различных примесей олова, никеля, вольфрама, углерода. Для проведения опыта образцы активировались с поверхности радиоактивным изотопом, а затем при относительно низких температурах производились диффузионное насыщение границ, деформация и нагрев до разных температур, при которых происходила рекристаллизация.  [c.202]

Возникновение в подобных условиях неоднородного распределения различных элементов в разных титановых сплавах было также установлено методом локального рентгеноспектрального анализа. Так, если в сплаве содержится в среднем 3,5% Си, то концентрация меди на границах а-пластин составляет 5,0%, а внутри 2,7%. При среднем содержании железа в сплаве - 0,1% концентрация его на границе 1,3%. Характерно, что олово, которое, по-видимому, является нейтральным в отношении полиморфного превращения элементом, распределяется в структуре сплава более или менее равномерно.  [c.342]

В электрохимическом ряду никель занимает промежуточное положение Ni +/Ni == —0>25 В, поэтому он более благороден, чем цинк и железо, но менее благороден, чем олово, свинец или медь. На рис. 3.5 показана упрощенная равновесная диаграмма потенциал — pH (диаграмма Пурбэ) системы Ni—HjO при 25 С, из анализа которой следует  [c.173]

Анализ отложений на фильтрах показывает, что, кроме указанных выше компонентов, входящих в состав пыли, в них содержатся окислы меди, олова, кадмия, натрия и др., образующихся в результате окисления металлов и сплавов, применяющихся для изготовления агрегатов.  [c.504]

Рафинирование проводят при температуре 240—260° С следующим образом. В ванну вводят малыми порциями серу в течение 10—15 мин при непрерывном перемешивании расплава механической мешалкой. Смесь канифоли и древесного угля вводят после всплывания на поверхность припоя сульфидов меди. Эта смесь необходима для предохранения поверхности ванны от окисления. Затем ванну нагревают до температуры 320—350°С и выдерживают при этой температуре в течение 30 мин при постоянном перемешивании, после чего на поверхности ванны образуется сухой черный порошок, не смачиваемый оловом, удаляемый скребком или шумовкой. Вслед за этим поверхность ванны покрывают слоем древесных опилок, которые поджигают в нескольких местах. Толщина слоя опилок должна быть не менее 3—4 мм. После сгорания рафинирование считается законченным. Качество рафинирования контролируется последующим химическим анализом припоя на содержание меди.  [c.211]

Для корректировки состава ванны раз в сутки после тщательного перемешивания проводят химический анализ припоя на содержание олова или определяют содержание олова по плотности припоя, который для сплавов Sn—РЬ с содержанием 20—60% Sn может быть выражен в виде следующей зависимости  [c.212]

Т. Н. Липчин и др. [33] исследовали температуру плавления олова, висмута, кадмия и цинка, предварительно затвердевших под высоким поршневым давлением. Определение температуры плавления проведено дифференциальным термическим анализом на фотопирометре Курнакова, снабженном терморегулирующим устройством для поддержания температуры холодных спаев термопар при 0° С. Установлено, что при расплавлении образцов цинка, предварительно затвердевших под давлением 200 и 2000 МН/м , температура его плавления повысилась на 3 и 6° С соответственно по сравнению с температурой плавления цинка, закристаллизованного под атмосферным давлением. Подобное увеличение температуры плавления зафиксировано для олова и кадмия для висмута зафиксировано снижение температуры плавления. Это объясняется весьма высокой устойчивостью дислокаций металлов, закристаллизованных под высоким давлением.  [c.14]


Для приготовления раствора I расчетное количество хлористого палладия тщательно растирают в фарфоровой ступке, переносят в сосуд с дистиллированной водой, предварительно подкисленной соляной кислотой в соответствии с рецептурой, и нагревают до температуры 50—80 °С до полного растворения хлористого палладия Приготовленный раствор переносят в рабочую ванну Для качественной оценки пригодности раствора активирования одну часть указанного раствора смешивают с равным объемом свеже-приготоаленного раствора сенснбилизировання Раствор пригоден к работе, если полученная смесь окрашивается в красный илн коричнево красный цвет Бурый осадок, выпадающий при попадании нонов олова из раствора сенснбилизировання вследствие плохой промывки, удаляют периодическим фильтрованием Корректирование раствора по содержанию хлористого палладия производят по данным химического анализа  [c.39]

При пайке с флюсом Прима П1 в печи, нагретой на 70 и 110° С выше температуры плавления припоя было обнаружено понижение температуры смачивания меди припоем П0С61 и оловом ниже их автономного плавления температура начала смачивания меди припоем П0С61 была 177° С, а оловом — 222° С. Сразу же после начала смачивания наступило резкое уменьшение контактного угла с 01 до значения з и растекание припоя. Во всех случаях растекание припоев П0С61 и олова происходило с образованием перед их фронтом блестящей каймы после легкоплавкой фазы со значительно меньшим контактным углом смачивания, чем у припоя. Перед фронтом каймы после пайки был обнаружен темный ореол. По данным рентгеноструктурного анализа порошка, снятого с блестящей каймы (в медном /Са-излучении), она содержит Sn, РЬ, 2п. Темный ореол состоит из олова и свинца. Смачивание и растекание свинца на меди с флюсами Прима II и Прима III в печи, нагретой до температуры на 70° С, превышающей температуру плавления свинца, происходило сразу же после достижения температур его автономного плавления (см. рис. 2).  [c.83]

В данной работе для определения содержания олова в стекле использовали метод нейтронно-активационного анализа, позволивший существенно повысить точность определения толщины снимаемого слоя стекломассы, а, следовательно, и точность определения параметров диффузии. Образцы стекломассы размером 1 X 1 X X 0,3 см с примесями олова в граничном слое облучали в изотопном канале реактора ВВР-М ИЯИ АН УССР в потоке тепловых нейтронов — 5 нейтронов см сек, в течение 100 ч. Активность радиоактивных изотопов олова в снимаемых слоях стекла достигала 10 се/с-. Для исключения примесного v-излучения Na , которое наблюдается при облучении стекла, образцы выдерживались в течение двух недель (период полураспада равен 14,9 ч).  [c.210]

Кроме исследования распределения олова в стекломассе и толщины слоев, метод нейтронно-активационного анализа может быть успешно использован и для изучения изотопного обмена Na — Sn в системе стекломасса — олово. Образец стекла диаметром 20 мм совмещали шлифованной стороной с поверхностью расплава олова и в таком состоянии нагревали до температуры 1100° С с последующим отжигом при этой температуре в течение 1 ч в среде очищенного аргона. Затем олово, находившееся в контакте с стекломассой, исходное олово и эталонный образец Naj Og облучали в потоке тепловых нейтронов 10 см сек пый анализ облученных образцов  [c.211]

В исходном состоянии исследуемый сплав БрОФб,5—0,15 представляет собой пересыщенный а-твердый раствор, термодинамически неустойчивый при повышенных температурах. Согласно диаграмме состояния резкое уменьшение концентрации олова наблюдается при температуре 350° и выше. На рис. 10 представлены результаты изменения параметра а решетки оловянистой бронзы после трения в течение 30 и 10 ч (й сх = 3,675 А). Видно, что на глубине 5 мкм а = 3,62 А и сохраняется постоянным до глубины 2 мкм. На меньшем расстоянии от поверхности наблюдается значительное обеднение сплава оловом и образование медной пленки (рис. 10, а). Однако возрастание скорости диффузии атомов в процессе трения может привести к совершенно другому эффекту— распаду неравновесного твердого раствора. На рис. 10, б представлены результаты рентгенографического анализа образца, который после 10 ч испытаний проявил скачкообразное увеличение трения и износа. Падение периода решетки а-твердого раствора сопровождалось появлением новой системы интерференционных линий, свидетельствующих об образовании в зоне контакта фазы, близкой по составу к интерметаллиду е. Распад твердого раствора и образование новой фазы являются следствием микродиффузион-ных процессов при трении и наличия флуктуаций концентрации олова в деформированных микрообъемах.  [c.24]

Характерным для МПС, в отличие от ньютоновских сред, является аномальное их поведение при малых градиентах скорости сдвига, которое выражается в уменьшении вязкости с увеличением скорости сдвига. Кривые течения т (7) при Т = onst имеют явную нелинейность. Это можно объяснить проявлением пристенного эффекта, который обычно наблюдается для всякой дисперсной системы, имеющей предел прочности. Большинство авторов объясняет его уменьшением концентрации частиц дисперсной фазы в тонком пристенном слое толщ,иной в 2—10 мкм по сравнению с концентрацией их в ядре потока, т. е. в области более высоких скоростей течения. Интенсивность влияния пристенного эффекта на течение МПС зависит от концентрации частиц дисперсной фазы в объеме (ядре течения) и пристенном слое смазки, степени дисперсности структурных элементов, вязкости масляной основы и пластической вязкости смазки. Повышение дисперсности частиц смазки приводит к снижению пристенного эффекта. Толщина пристенного слоя не оказывает суш,ественного влияния на интенсивность проявления пристенного эффекта при течении смазок как в капиллярах, так и в кольцевых зазорах. Повышение концентрации металлических наполнителей в смазках увеличивает показатели консистенции и интенсивность проявления пристенного эффекта. Так, повышение концентрации порошков олова в смазке с 10 до 40 мас.% приводит к возрастанию вязкости в 1,5—2 раза. С ростом температуры интенсивность пристенного эффекта МПС снижается, а начало линейного участка кривой течения смещается в сторону меньших скоростей сдвига. Следовательно, при анализе работы МПС в подшипниках скольжения, когда зазоры между цапфой и вкладышем становятся соизмеримыми с характерными размерами дисперсных частиц наполнителя, надо учитывать аномалии течения, обусловленные пристенным эффектом.  [c.70]


С целью определения наличия пфераспределения касситерита по камерам отсадочной машины проводились химические анализы продуктов под каждой камерой. Анализ показал, что содержание олова в продукте разгрузки первой камфы составило 0.98, второй - 0.75, третьей -  [c.271]

Естественно, что при все увеличивающихся масштабах выпуска белой жести, старые методы контроля толш,ины покрытия, основанные на растворении покрытия и его химическом анализе, не могут обеспечивать непрерывность контроля и способствовать повышению качества выпускаемой продукции, при максимально возможном экономном расходовании дорогостоящ,его олова. . .  [c.187]

Объёмный метод применяется для ускоренных анализов 10 г стали (можно использовать раствор после определения S по Шульте) растворяют в 100 мл НС1 (1 1) при нагревании (не выше 105°). Как только растворение закончится, быстро охлаждают раствор до комнатной температуры. При содержании олова ниже 0,1% приливают 5 мл, а при содержании выше 0,1%—10 мл 0,Ш (приблизительно) раствора йодата калия (3,57 г KJO3 и 20 г KJ в л воды). Спустя 5 мин. вносят около 2,5 г металлического AI в виде гранул. После растворения всего А1 нагревают раствор до кипения и очень осторожно кипя-  [c.108]

Определение меди. Определение меди (одновременно и свинца) производят в растворе после определения олова. Для этого устанавливают высокую кислотность (HNOg), необходимую для электролитического выделения большей части свинца, а затем прибавляют H2SO4 для лучшего выделения Си. Окончание определения — см. Анализ бронзы .  [c.111]

Счетчик предстартового времени ракеты не сработал ввиду того, что первичная батарея после ее задействования не дала нужного напряжения. Эта батарея одноразового применения в задейственном состоянии была снята с ракеты и включена на нагрузку для полной разрядки. Затем батарея была передана в лабораторию анализа отказов для выяснения причины неисправности. Была проведена проверка внешней проводки на отсутствие обрывов цепей никаких нарушений в ней обнаружено не было. После снятия корпуса из нержавеющей стали батарея была тщательно разобрана представителем поставщика, прибывшим в лабораторию для участия в испытаниях. Удельный вес электролита (гидрат окиси калия) оказался равным 1,3007 прп 25° С, т. е. в допустимых пределах. Спектрографический анализ электролита обнаружил в нем следы алюминия, кремния, олова, свинца, меди и железа.  [c.294]

В работе [3] изучали положение петли (уРе) твердого раствора в сплавах системы Fe—Sn. Сплавы выплавляли в дуговой печи с нерас-ходуемым вольфрамовым электродом, в качестве шихтовых материа-доь использовали электролитическое железо чистотой 99,95 % и олова чистотой 99,99 %. Исследование проводили методами рентгеновского анализа. При температуре 1100 °С границы между (уРе) / [(уре) + (аРе)] и [(уРе) + (аРе)] / (аРе) расположены при концентрациях 0,71 и 1,29 % (ат.) Sn, что хорошо согласуется с расчетом  [c.557]

Можно указать ряд огнеупорных материалов, начиная от огнеупорной глины с высоким содержанием кремнезема до обычных тиглей из окислов, содержащих заметные количества кремневой кислоты в качестве связки, и спеченных или рекри-сталлизованных тиглей, изготовленных из чистых окислов. Из этих материалов огнеупорная глина применима для ряда неактивных сплавов, но она не должна использоваться без предварительного анализа на загрязнения. Переходя к тугоплавким окислам, нужно подчеркнуть, что обычно почти все технические марки окислов для тиглей, известные под названием магнезия или чистая магнезия , в действительности представляют собой смеси магнезии с заметными количествами кремнистой связки. При изучении систем, в которых активность сплавов меняется в широких пределах, можег оказаться, что такого типа тигли пригодны для сплавов одной части системы и не пригодны для другой. Так, например, при изучении систем Са—Sn и Mg—Sn сплавы, богатые оловом, могут выплавляться в обычных промышленных магнезитовых тиглях, в то время как для сплавов, богатых магнием, необходимо применять тигли из чистых окислов сплавы, богатые кальцием, выплавляют в стальных тиглях. Таким образом, часто экономичней применять тигли из различных материалов для сплавов одной и той же системы. Иногда можно избежать расхода чистых огнеупорных окислов благодаря применению смеси глинозема и плавикового шпата [46] для обмазки шамотных тиглей. По этой технологии обычный тигель из шамота футеруют или обмазывают смесью глинозема и плавикового шпата с небольшим количеством связки, в качестве которой служит гум-  [c.83]

Для построения диаграммы методом термического анализа необходимо получить кривые охлаждения чистых металлов и ряда их сплавов. В данном случае проведено исследование чистых металлов олова и цинка, а также их сплавов доэвтектическо-го (4% Zn + 96% Sn), эвтектического (9% Zn + 91% Sn) и двух сплавов заэвтектических (20% Zn + 80% Sn и 50% Zn + 50% Sn) составов (рис.Ш).  [c.211]

Для анализа превращений, протекающих в оловянных бронзах, представляют интерес следующие фазы, образующиеся в системе Си-—8п (рис. 8.7, а) а-твердый раствор олова в меди с ГЦК решеткой, три электронных соединения Р(Сн58п)-, 5(Сиз18п8)- и е(Сиз8п)-фазы, а также у-фаза (твердый раствор на базе химического соединения). При температурах  [c.202]

На вкладышах подшипников с антифрикционным слоем оловянного баббита иногда образуется напоминающая по внешнему виду нагар твердая корка, не поддающаяся действию напильника и шабера. Относительно чаще такая корка, неравномерная по толщине в наиболее нагруженной части подшипника до 0,4 мм, встречается в рамовых, мотылевых и головных подшипниках дизелей. По данным химического анализа, она содержит окислы олова, меди, сурьмы и небольшое количество углеродистых веществ. Твердость корки определяется содержанием наиболее твердого из окислов — окисла олова. Причины образования корки — местные повторяющиеся перегревы поверхности трения вследствие недостаточного смазывания либо наличие воздуха в масле. Эта корка обладает высокой износостойкостью, однако при разрушении ее крупные частицы будут действовать как абразив.  [c.183]

Не исключено, что массоперенос в твердой фазе сопровождает СР сплавов, у которых концентрация электроположительного компонента даже менее 1 ат.%. Соответствующие данные получены при помощи радиохимического анализа [ 2—64]. Так, после анодного растворения сплава lTiO,3Sn (меченного и Sn" ) и послойного химического травления поверхности обнаружена область, в которой концентрация олова непрерывно Изменяется [63]. Ее толщина составляет ЗООО атомных слоев, причем поверхностное содержание олова примерно в 7 раз превышает объемное. На отдельных участках поверхности концентрация олова достигала 7-ь 10 ат.%. Обогащение поверхности сплава электроположительным компонентом подтверждено результатами радиохимических экспериментов со сплавами InO,25 u [62], InO.lAg [65], а также данными регистрации обратного резерфордов-ского рассеивания ионов, возникающего при облучении пучком ионов гелия поверхности сплавов системы А1—Си (0,5 1 ат.% Си), подвергнутых анодной поляризации в ци-тратном растворе [60].  [c.46]

Из анализа полученных данных и диаграммы Пурбэ систеш Sn- ( 0 сделан вывод, что обсувдаемая коррозия, олова обусловлена протеканием двух сопряженных реакций - катодного восстановления 5/ 02, негфврывно образующейся на поверхности металла за счет химического взаимодействия его с перекисью водорода по следующим уравнениям  [c.21]

Во всех случаях растекание припоев П0С61 и олова происходит с образованием перед их фронтом блестящей каймы со значительно меньшим контактным углом смачивания, чем у припоя. Перед фронтом каймы после пайки обнаружен темный ореол. По данным рентгеноструктурного анализа порошка, снятого с блестящей каймы (в медном ka -излучении), она состоит из олова, свинца и цинка. Темный ореол состоит из олова и свинца.  [c.269]


Смотреть страницы где упоминается термин Анализ олова : [c.611]    [c.200]    [c.340]    [c.156]    [c.289]    [c.657]    [c.183]    [c.204]    [c.631]    [c.356]    [c.80]    [c.477]    [c.477]   
Гальванические покрытия в машиностроении Т 2 (1985) -- [ c.2 , c.76 , c.77 ]



ПОИСК



Олово

Олово Спектральный анализ - Длина волны

Савина. Анализ окиси олова (II) рентгеновским методом



© 2025 Mash-xxl.info Реклама на сайте