Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процесс Скорость распространения

При рассмотрении условий горения заранее перемешанной горючей газовой смеси суш,ественное значение имеют две характеристики процесса скорость распространения пламени и время горения. Первая величина определяет конфигурацию фронта пламени, вторая — ширину зоны горения.  [c.235]

Рассмотрим двухфазную среду вдали от критической точки при малых степенях влажности. Тогда пар будет являться определяющей фазой (в том смысле, что большинство физических процессов скорость распространения малых возмущений, расход среды, распределение давления и т. д.— будут в существе щой мере зависеть от параметров и свойств паровой фазы, а не от параметров жидкости). В этом случае степень неравновесности процесса расширения среды целесообразно представить как отношение  [c.11]


Сгорание — это не мгновенный процесс. Скорость распространения фронта пламени в двигателе обычно составляет 50—60 м/с. Однако в случае применения низкосортного для данного двигателя бензина или при некоторых других обстоятельствах, о которых будет сказано ниже, сгорание может принять взрывной характер. Скорость распространения фронта волны может повыситься до 2000—2500 м/с. Это явление называется детонацией.  [c.28]

Если исследовать в общем виде задачу о распространении волн в простых жидкостях с исчезающей памятью, то скорость распространения оказывается равной корню квадратному из отношения модуля упругости и плотности. Модуль упругости должен оцениваться локально величиной ц/Л он определяется только при распространении волны в покоящейся среде. Волны ускорения (т. е. разрывы ускорения, соответствующие разрывам скорости деформации) могут затухать в процессе их распространения, но могут также и возрастать по амплитуде, перерождаясь в ударные волны (разрывы скорости) за конечное время. Последняя ситуация возникает при условии, что начальная амплитуда волны достаточно велика, и при условии, что уравнение состояния в достаточной степени нелинейно. Интересно, что волна, распростра-  [c.296]

Теплоемкость металла ср при постоянной теплопроводности к оказывает более сложное влияние на процесс распространения теплоты в полубесконечном теле. Изменение теплоемкости можно представить как одновременное действие двух процессов изменения количества введенной теплоты и изменения скорости распространения теплоты. Запишем уравнение (6.2) иначе  [c.160]

Основной принцип устойчивого процесса горения в любой горелке, использующей газообразное топливо и газообразный окислитель, — соответствие скорости истечения газов из сопла и скорости распространения фронта пламени в данной системе  [c.312]

Дальнейшее решение проблем материаловедения и, в частности, проблемы механического поведения материалов, будет зависеть от скорости распространения синергетического мышления, так как развитие знания - это нелинейный процесс [46], как отметил С.П. Капица и др. [47] Принципиальным становится вопрос, что и как быстро люди готовы понять и принять, как изменяется их восприятие мира и себя, какие смыслы и ценности можно и нужно сохранить, а от чего придется отказаться. Одним словом, все эти проблемы следует отнести к междисциплинарным .  [c.358]


В дальнейшем будет подробно исследован вопрос о скорости электромагнитной волны (см. 1.4). При этом показано, что введенного простого понятия фазовой скорости недостаточно для описания сложных процессов распространения электромагнитной волны в реальной среде, так как этот процесс не сводится к определению скорости какой-либо точки, а связан со скоростью распространения некоего состояния.  [c.30]

Выше говорилось, что ньютоновская механика основана на предположении о возможности существования сколь угодно быстрых сигналов. Это предположение, однако, не нашло подтверждения на опыте. С другой стороны, то обстоятельство, что самым быстрым из известных в физике процессов является распространение света, дало основание для другого предположения, сделанного Эйнштейном и состоящего в том, что скорость света вообще является предельной скоростью распространения сигналов. Подобная гипотеза означает, конечно, что величина предельной скорости не зависит от выбора инерциальной системы отсчета, в противном случае можно было бы обнаружить равномерное и прямолинейное движение такой системы вопреки принципу относительности.  [c.447]

Звуковая волна представляет собой последовательные сжатия и разрежения воздуха, распространяющиеся со скоростью, зависящей от свойств воздуха. В звуковой волне, как и в случае отдельного импульса, сжатия и разрежения происходят столь быстро, что обмен теплом не успевает происходить и процесс протекает адиабатически (см. 134). Поэтому для скорости распространения звуковых волн малой амплитуды получается такое же выражение, как и для скорости отдельного слабого импульса сжатия  [c.721]

Величина wi является скоростью распространения ударной волны. (в нашем случае волны детонации в неподвижном газе). Для исследования процесса удобнее считать, что газ притекает со скоростью W к области детонации, а фронт волны неподвижен. Эта обращенная схема явления принята нами в последующем изложении.  [c.219]

Следовательно, процесс детонации, начавшийся со взрыва, непрерывно ослабевает до тех пор, пока скорость распространения не снизится до минимального значения, отвечающего наступлению теплового кризиса в зоне горения. С этого момента распространение детонационной волны приобретает устойчивый стационарный характер.  [c.223]

Сжимаемость жидкости необходимо учитывать также в процессах, в которых скорость движения самой жидкости имеет величину порядка скорости распространения звука. (Такие случаи пока еще не реализованы в гидравлических процессах.)  [c.18]

Высокие давления и температуры, имеющие место при расширении продуктов взрыва, постепенно уменьшаются, причем процесс расширения протекает различно и в сильной степени определяется геометрической формой заряда. Динамика взрыва и расширения продуктов взрыва для плоской полосы В. В. показана на рис. 6, при этом предполагается, что детонация вызвана на большом расстоянии от рассматриваемой области. Перед фронтом детонационной волны находится В. В., за ее фронтом — продукты взрыва. Так как продукты взрыва имеют высокое давление и высокую температуру, то они расширяются в поперечном направлении, при этом образуется волна разгрузки, скорость распространения которой равна скорости звука  [c.14]

Трудности, возникающие в эксперименте при фотографировании процесса распространения волн напряжений, обусловлены малой продолжительностью явления, сочетающейся при изучении движения поверхности с малостью перемещений, а при изучении движения фронта волны—с высокими значениями скорости распространения. Возникает потребность в синхронизации источника освещения с исследуемым явлением, при этом главная задача состоит в получении хорошего снимка. Для этого используют особенности изучаемого явления, так, например, удар снаряда о преграду можно использовать для начального включения искры, разрыв проволочек на пути движения снаряда в преграде обеспечивает последующие включения искры. Для получения одиночного изображения движущегося объекта применяется метод, в котором объект перекрывает пучок света между фотоэлементом и конденсатором. Синхронизация движения объекта с одиночной вспышкой достигается изменением расстояния между предметом и его положением, при котором он прерывает луч. Если фотографируемое явление сопровождается звуком, то можно использовать микрофонный адаптер. Синхронизация между явлениями, порождающими звук, и источником света достигается изменением положения предмета относительно микрофона ряд последовательных фотографий повторяющихся операций получают изменением положения микрофона от экспозиции к экспозиции. В зависимости от конкретной задачи возможны различные комбинации микрофонного адаптера и связанной с ним аппаратуры.  [c.30]


Из (10.1.11) видно, что Уф определяет скорость распространения фазы, поэтому Уф называют фазовой скоростью, а величину к — со/Уф — фазовой постоянной или волновым числом. Эта постоянная характеризует пространственную периодичность волнового процесса и связана с длиной волны соотношением  [c.322]

Начало четвертого этапа характеризуется ситуацией, при которой давление у входа в трубу со стороны резервуара (р) больше, чем со стороны трубы р—Ар), жидкость из резервуара начнет втекать в трубу со скоростью и и давление в ней будет возрастать до р. При этом фронт первоначального давления х—х станет перемещаться в задвижке со скоростью распространения ударной волны. К концу этапа скорость во всей трубе равна и, а давление р. Но так как задвижка закрыта, то, начиная с конца четвертого этапа, процесс гидравлического удара начнет повторяться. При гидравлическом ударе часть энергии жидкости переходит в теплоту, поэтому с течением времени амплитуда колебаний давления Ар затухает и процесс приостанавливается.  [c.67]

Здесь Р, р2 — произвольные функции. Если вид функций р2 известен, то по формулам (1.15) можно найти распределение, давления, плотности или скорости газа в любой момент времени. Волны (1.15) — нелинейные, поскольку аргумент функций р1, р2 зависит от величины самого возмущения, и профиль, волн искажается в процессе их распространения. Их называют простыми волнами. Можно показать, что к области однородного потока могут примыкать только простые волны. Решения для двумерного и трехмерного случаев, примыкающие к области однородного течения, называются двойными и тройными волнами соответственно.  [c.14]

Следовательно, р2>Рь Такой процесс называется детонацией при постоянном объеме. Скорость распространения детонационного фронта в этом случае бесконечно велика.  [c.91]

Описанный процесс происходит чрезвычайно быстро, так как скорости распространения ударной волны очень велики. Потери энергии, сопутствующие колебательному движению жидкости, приводят к постепенному затуханию данного процесса. На рис. 6.9 приведена диаграмма изменения давления при гидравлическом ударе в зависимости от времени, которая показывает, что давление при гидравлическом ударе может во много раз превышать давление, имеющееся в условиях статического напора.  [c.160]

Равенство (51.8) является динамическим аналогом соотношения, связывающего силовые п энергетические характеристики процесса разрушения и оно может служить уравнением (если положить 2"( = G = G ) для определения зависимости скорости распространения трещины от времени.  [c.408]

Основное из этих положений заключается в том,что сгорание в двигателе с принудительным зажиганием следует рассматривать как распространение зоны сгорания, а нефронта пламени,что характерно для ламинарного процесса. Скорость распространения этой зоны определяется в основном факторами, связанными с крупномасштабной турбулентностью (скоростью поршня и  [c.39]

Взрывом штампуют обычно в бассейне, наполненном водой (рис. 3.47, а). Заготовку, зажатую между матрицей и прижимом, опускают в бассейн. Полость матрицы под заготовкой вакуумируется, чтобы воздух не препятствовал плотному ее прилеганию к матрице. Заряд с детонатором подвешивают в воде над заготовкой. Взрыв образует ударную волну высокого давления, которая, достигая заготовки, вызывает ее разгон. Процесс штамповки длится тысячные долп секунды, а скорости перемещения заготовки соизмеримы со скоростями распространения пластических деформаций в металле.  [c.114]

Растрескивание металла трубопроводов вследствие водородного охрупчивания зарождается на участках стали с твердой мартенситной структурой, обычно в местах концентрации остаточных напряжений, возникающих при изготовлении труб. Как правило, коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом поверхностного дефекта в вершине сварного соединения [19]. Исследования коррозионных повреждений трубопроводов, изготовленных из стали марки 17Г2С и транспортирующих газ с примесью сероводорода (до 2%), показали, что общим для всех случаев разрушения сварных соединений является зарождение трещин  [c.17]

Оптическая активность среды проявляется двояким образом в круговом двулучепреломлеиии, т. е. в разной скорости распространения света в веществе, поляризоваиного по кругу вправо и влево, и в круговом дихроизме, т. е. в разных коэффициентах поглощения для света правой и левой круговой поляризации. Оба явления отражают один и тот же физический процесс взаимодействия световой волны с веществом, поэтому, естественно, зная одну из величин, можно найти другую, На практике часто необходимо измерять оба  [c.298]

Процесс распространения сжатия или разрежения в газе происходит в результате столкновений молекул газа, поэтому скорость распространения звука в газе примерно равна скорости теплового движения молекул. Средняя скорость теплового движения молекул уменьшается с понижением температуры газа, поэтому уменьшается с понижением температуры газа и скорость распространения звука. Например, в йодороде при понижении температуры от 300 до 17 К ско-  [c.223]


Преломленне волн. Для наблюдения процесса распространения волн через границу раздела двух сред с различными физическими свойствами поставим следующий опыт. На дно волновой ванны поло им стеклянную пластинку таким образом, чтобы один ее край был 1засположен под углом около 45 к направлению распространения плоских поверхностных волн на воде. Наблюдения показывают, что расстояние / , проходимое Болной над стеклянной пластинкой, меньше расстояния h, которое проходит за то же время волна в Toii части ианны, где нет пластины (рис. 224). Следовательно, скорость распространения поверхностных волн зависит от глубины (толщины слоя воды), с уменьшением глубины скорость распространения волны уменьшается.  [c.226]

При этом искажается форма импульса и изменяется частота, соответствующая максимуму спектра В процессе расгфосгра -нения импульс может совершенно изменить свою исходную форму. Физические причины таких искажений многообразны так, например, в активной среде лазера наибольшее усиление происходит в передней части импульса, что должно приводить к дополнительному сдвигу максимума и соответственному увеличению групповой скорости, определяемой по указанной выше формальной схеме. Однако такая внутренняя перестройка импульса не может быть использована для передачи сигнала. В связи с этим нужно весьма критически относиться к иногда появляющимся публикациям, в которых утверждается, что групповая скорость лазерного излучения может быть больше скорости света в вакууме. Нужно ясно представлять себе, что в этом случае понятие групповой скорости теряет свой первоначальный смысл и величина U уже не определяет скорость распространения сигнала, которая, согласно специальной теории относительности, никогда не может быть больше скорости света в вакууме.  [c.53]

Скорость звука относительно среды зависит только от механических свойств этой среды и совсем не зависит от скорости движения источника относительно среды. Это чем-то напоминает движение предметов на ленте конвейера. Независимо от того, как быстро вы бежите параллельно ленте в момент, когда кладете на нее предмет, скорость этого предмета, как только он лег на ленту, будет в точности равна скорости движения самой ленты конвейера. Если имеется какая-то определенная среда, то определенной является и скорость звука Узв в этой СрбДб. Известно следующее соотношение между длиной волны, частотой и скоростью распространения волнового процесса  [c.324]

Каждое из этих двух движений, взятое по отдельности, характеризует движение простой волны, а совокупность их (98) или, что то же самое, (96)—наложение двух двилсущихся навстречу друг другу волн с равными по абсолютной величине скоростями ао каждая ). Контуры этих волн определяются видом функций fi(ii) и /2(12) в частности, волны могут быть синусоидальными, описывающими колебательный процесс возмущений скорости, плотности или давления в газе. К таким процессам относится распространение звука в газе с характерной для него последовательностью повышений и понижений давления в данной точке. В связи с этим принято скорость распространения малых возмущений в среде коротко называть скоростью звука. Процессами распространения звуковых волн за-  [c.152]

Кинетика фазового перехода. При сверхироводяш,ем переходе часто наблюдаются задержки в достижении равновесия. Они особенно длительны в тех случаях, когда образец находится в промежуточном состоянии индукция обра." ца может меняться в течение иолучаса после изменения величины внешнего поля (см. п. 8). Эти наблюдения трудно анализировать ввиду сложности картины распределения фаз. Недавно Фабер [38, 39] измерил скорость распространения границы фазы в длинном цилиндрическом стержне, помещенном в продольное магнитное поле, В этом случае промежуточное состояние отсутствует, благодаря чему удалось исследовать особенности переходного процесса.  [c.659]

Рассмотрим прежде всего случай, когда образец находится сначала в сверхпроводящем состоянии и приложенное поле Hj внезапно возрастает до величины, превышающей критическую Яь-р., вызывая переход в нормальную фазу. В этом случае радиальные размеры сверхпроводящей области начинают уменьшаться, иока она не исчезнет совсем. Движение границы связано также с изменением магнитного поля в нормальной фазе, которое становится равным приложенному нолю. Последнему процессу препятствуют вихревые токи. Многие исследователи [60,145] и раньше указывали на влияние вихревых токов на скорость распространения фазовой границы, но окончательно этот вопрос был решен только недавно Пнппардом [163].  [c.659]

Если свойства тела неодинаковы по всей длине, то картина будет совсем иная. Пусть, иапример, плотность струны или стержня в какой-то точке А резко изменяется. Скорость распространения нмиульса в обеих частях струны будет различна, и импульс, вызванный первым ударом, частично отразится в точке А, а частично пройдет во вторую часть струны и отразится от ее конца. На обратном пути также произойдет частичное отражение, и к началу струны вернется уже не такой импульс, который возник при ударе. Помимо этого, в струне будут распространяться и частично отраженные импульсы, которые будут возвращаться к концам струны не в те моменты, когда к ним возвращается прошедший импульс (так как эти импульсы проходят разные пути). Собственные колебания не будут пе1)иодическими. Л это и значит, гто нормальные колебания, из которых состоит всякое собственное колебание, не будут кратными основному тону (сумма колебаний с кратными частотами всегда дала бы периодический процесс). Нарушение од/юролности сплошной системы делает негармоническими обертоны системы.  [c.672]

Из сравнения равенств (5) и (6) видно, что скорость распространения сильной волны сжатия всегда выше скорости звука. Обычно распространение звука сопровождается столь незначительным изменением состояния газа, что энтропию можно считать практически постоянной, т. е. полагать, что при этом имеет место идеальный адиабатический процесс p/p = onst. Но в этом случае  [c.117]

Скорость звука представляет собой скорость распространения бесконечно малых возмущений в сплошной среде и зависит от упругих свойств и плотности среды. Так как в звуковой волне практически нет теплообмена между той частью, через которую проходит звуковая волна, и другими частями газа, то изменение состояния его осуществляется без подвода или отвода теплоты — адиабатно. Вследствие малости изменений состояния газа в волнах разре>кения и сжатия действие внутреннего трения очень мало, и распространение звука можно рассматривать как обратимый адиабатный — изо-энтропный процесс (s = onst).  [c.133]

Расиространение горения в смесях газа с горючими частицами может происходить как за счет процессов переноса — теплопроводности и диффузии, передачи тепла излучением, так и за счет газодинамических процессов — конвективного двпженпя относительно частиц горячих продуктов реакции, ударных и детонационных волн. Реализация того или иного механизма зависит от режима горения частиц, концентрации топлива, геометрии устройства, где горение осуществляется, и особенностей инициирования. При этом скорость распространения фронта горения изменяется в широком диапазоне от нескольких сантиметров до нескольких метров в секунду.  [c.402]


На первом этапе при мгновенном закрытии задвижки (рис. 5.11) слой жидкости около нее остановится, а остальная жидкость в трубе будет продолжать двигаться с прежней скоростью и. Через некоторое время начнут останавливаться и слои жидкости слева от задвижки, т. е. фронт остановивщейся жидкости х—х будет двигаться от задвижки к резервуару. В остановивщемся объеме жидкости между задвижкой и сечением х—х возникнет дополнительное давление Ар. Таким образом, справа от сечения х—х жидкость неподвижна, и ее давление равно р+Ар, а слева от сечения X—X жидкость по-прежнему движется к задвижке со скоростью ц и в трубе будет прежнее давление р. Фронт сжатия х—х движется в направлении резервуара со скоростью распространения ударной волны с. Описанный процесс послойного сжатия будет продолжаться до тех пор, пока ударная волна не дойдет до резервуара. На этом первый этап гидравлического удара заканчивается  [c.66]

На рис. 5.4 показана схема перехода горения газовой смеси при поджигании ее у закрытого конца трубы [30]. Физической причиной возникновения детонации является взрыв адиабатически сжатой газовой смеси. На начальном этапе горения (см. рис. 5.4) образуется ламинарное пламя П. В результате расщирения продуктов сгорания перед фронтом пламени возникает волна сжатия 5, за которой происходит ускорение движения фронта пламени и непрореагировавщей газовой смеси. В дальнейшем в связи с турбулизацией потока газа перед пламенем оно превращается в турбулентную область сгорания. В результате увеличивается скорость распространения пламени относительно несгоревщей смеси, что приводит к увеличению давления и температуры в волне сжатия. Прогрессивное увеличение амплитуды волны сжатия происходит до тех пор, пока не создаются условия, необходимые для взрывного воспламенения адиабатически сжатой смеси и перехода процесса в детонационный.  [c.98]

Под скоростью звука понимают скорость распространения в теле малых возмущений, в частности упругих волн малой амплитуды. Слабые упругие волны называют звуковыми. В распространяющейся звуковой волне процессы сжатия и расширения происходят настолько быстро, что теплообмен между той частью тела, через которую проходит звуковая волна, и другими его чa т ми практически не успевает произойти. Поэтому изменение состояния тела при прохождении через него звуковой волны осуществляется без подвода или отвода теплоты, т. е. адиабатически. Так как вследствие малости изменений состояния действие внутреннего трения оказывается исчезающе малым, то звуковые колебания можно рассматривать как обратимый адиабатический или изоэнтропический процесс, независимо от того, как меняется состояние всего тела в целом. Скорость звука представляет собой характерную для данного вещества величину, изменяющуюся в зависимости от его состояния, и определяется по формуле  [c.104]


Смотреть страницы где упоминается термин Процесс Скорость распространения : [c.50]    [c.74]    [c.298]    [c.152]    [c.134]    [c.58]    [c.242]    [c.417]    [c.144]    [c.199]    [c.174]   
Автомобильные двигатели Издание 2 (1977) -- [ c.0 ]



ПОИСК



Скорость распространения



© 2025 Mash-xxl.info Реклама на сайте