Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация разрушающая

Разрушение материалов при периодических многократно изменяющихся напряжениях (порядка миллионов циклов) довольно сильно отличается от разрушения при действии статических или повторяемых малое число раз нагрузках. При переменных напряжениях разрушение даже пластичных материалов происходит внезапно, без заметной пластической деформации. Разрушающее напряжение значительно ниже временного сопротивления, а иногда даже ниже предела упругости материала. Задолго до разрушения  [c.37]


Перейдем теперь к рассмотрению изгибающего момента М. При этом пользуются обозначениями у — расстояние от нейтральной оси изгиба до поверхностного слоя слоистой пластины 8/и — деформация, разрушающая волокна в по верхностном слое. Для изгибающего момента можно записать  [c.222]

Высокие скорости, которые при резком сжатии частиц создают энергию удара, производящую деформацию разрушающего порядка,  [c.326]

При ультразвуковой сварке (рис. 5.42) свариваемые заготовки 5 размещают на опоре б. Наконечник 4 рабочего инструмента 3 соединен с магнитострикционным преобразователем 1 через трансформатор 2 продольных упругих колебаний, представляющих собой вместе с рабочим инструментом волновод. Нормальная сжимающая сила Р создается моментом М в узле колебаний. В результате ультразвуковых колебаний в тонких слоях контактирующих поверхностей создаются сдвиговые деформации, разрушающие поверхностные пленки. Тонкие поверхностные слои металла нагреваются, металл в этих слоях немного размягчается и под действием силы Р пластически деформируется. При сближении поверхностей на расстояние действия межатомных сил между ни-  [c.266]

Форму разрушения можно видоизменить путем соединения узлов фасонными пластинами, что изменяет эффективную длину рычагов шарнирного механизма. На форму разрушения также влияют панели, работающие на сдвиг. При расчете повреждаемости используются другие критерии, чем при расчете стадии упругих деформаций, так как требования, связанные с пластическим разрушением, определяются (при образовании пластических шарниров) расстоянием от крайнего волокна до нейтральной оси, а на стадии упругих деформаций разрушающие напряжения зависят от квадрата высоты сечения. Существует тенденция выделять для измерений небольшую группу наиболее нагруженных продольных балок с жесткими узловыми соединениями.  [c.123]

Для получения неразъемного соединения при сварке ультразвуком детали в точке требуемого соединения предварительно сжимают, а затем к зоне контакта с помощью специального инструмента подводят ультразвуковые колебания частотой 15—70 кГц. В результате в тонких слоях контактирующих поверхностей создаются сдвиговые деформации, разрушающие поверхностные пленки. Тонкие поверхностные слои металла нагревают-  [c.412]


Металл Термообработка Деформация % Разрушающая нагрузка в кГ  [c.586]

Разрушение материалов при периодических многократно изменяющихся напряжениях (порядка миллионов циклов) довольно сильно отличается от разрушения при действии статических или повторяемых малое число раз нагрузках. При переменных напряжениях разрушение даже пластичных материалов происходит внезапно, без заметной пластической деформации. Разрушающее напряжение значительно ниже временного сопротивления, а иногда даже ниже предела упругости материала. Задолго до разрушения начинается процесс постепенного развития микроскопических трещин, возникающих в отдельных кристаллитах и вырастающих затем в одну большую трещину, распространяющуюся на значительную часть сечения. Поверхность, по которой происходит разрушение, имеет две ярко выраженные зоны одну гладкую притертую — зону распространения трещины, и вторую зернистую—-зону непосредственного излома другой части сечения, ослабленного трещиной.  [c.40]

При конструировании деталей аппаратуры необходимо обращать внимание на устойчивость формы при нагреве и охлаждении в процессе эмалирования, так как при неравномерном нагревании возникают деформации, разрушающие эмалевый слой. Эти напряжения возрастают с увеличением разностенности деталей и узлов аппаратуры.  [c.145]

Основными механическими свойствами материала, характеризующими разрушение образца, являются критическая деформация (или предельная пластичность) е/ и истинное разрушающее напряжение 5к. В различных металлах зависимости ) Т) и Sk T) ведут себя различно. Во многом это определяется типом кристаллической решетки металла. У металлов с гране-центрированной кубической решеткой (ГЦК металлов) температурная зависимость механических свойств в широком диапазоне температур [211, 242, 243] практически отсутствует. Примерно так же ведут себя и предельные характеристики е/ и 5к в пластичных металлах с гексагональной плотноупакованной решеткой (ГПУ металлах), например в а-титане, хотя влияние температуры сказывается на них сильнее [211].  [c.51]

Рис. 2.1. Температурные зависимости разрушающего напряжения S , предела текучести От и критической деформации для поликристаллического молибдена [211] Рис. 2.1. <a href="/info/191882">Температурные зависимости</a> разрушающего напряжения S , <a href="/info/1680">предела текучести</a> От и <a href="/info/166381">критической деформации</a> для поликристаллического молибдена [211]
Использование в критерии хрупкого разрушения (2.11) характеристики материала S ставит задачу изучения зависимостей критического разрушающего напряжения от различных факторов температуры, предварительной деформации, истории  [c.72]

В первой серии опытов были получены исходные зависимости 5с от пластической деформации е/. Для этого были испытаны цилиндрические образцы (диаметр рабочей части 5 мм, длина рабочей части 25 мм) на разрыв при разных температурах (в области хрупкого разрушения). Определяли среднее разрушающее напряжение 5к = Рк/ла где Рк — нагрузка в момент разрыва образца а —радиус минимального сечения образца. Максимальное значение разрушающего напряжения, достигаемое в центре образца, т. е. величину 5с, рассчитывали с учетом жесткости напряженного состояния в шейке по зависимостям, предложенным П. Бриджменом [15]  [c.73]

В сериях предварительных экспериментов на гладких цилиндрических образцах в условиях растяжения в диапазоне температур от —268,8 до +20°С для стали в исходном состоянии получены следующие характеристики предел текучести ат = сто,2, предел прочности, равномерное удлинение, истинное разрушающее напряжение 5к, предельная деформация е/. Такие же характеристики при Г = —196, —100, —60 °С получены для предварительно деформированного состояния стали. По результатам экспериментов была построена зависимость критического напряжения хрупкого разрушения 5с (найденного с учетом мно-  [c.100]


Разрушение материала в общем случае можно условно разделить на два типа. К первому относятся все виды, разрушений, для которых критические параметры, контролирующие разрушение, практически нечувствительны к скорости деформирования I и температуре Т. Разрушение такого типа наблюдается при различных условиях деформирования. Наиболее типичными примерами являются хрупкое и вязкое разрушения при статическом активном деформировании, для которых критическое разрушающее напряжение и критическая деформация инвариантны к скорости нагружения и температуре (см. гл. 2).  [c.150]

Величина Q является некоторым критическим разрушающим напряжением (по сути напряжением отрыва 5с), которое предполагается не зависимым от температуры Т и скорости деформации g.  [c.228]

В свете накопленных данных возникло предположение [3, 30], что в основе механизма КРН лежит не электрохимическое растворение металла, а ослабление когезионных связей между поверхностными атомами металла вследствие адсорбции компонентов среды. Этот механизм был назван адсорбционным. Так как хемосорбция специфична, разрушающие компоненты среды также обладают специфичностью. С уменьшением поверхностной энергии металла увеличивается тенденция к образованию трещин при растягивающих напряжениях. Следовательно, этот механизм соответствует критерию образования трещин на стекле и других хрупких твердых телах — так называемому критерию Гриффитса, согласно которому энергия деформации напряженного твердого тела должна превышать энергию общей увеличившейся поверхности, образованной зарождающейся трещиной [31 ]. Любая адсорбция, снижающая поверхностную энергию, должна способствовать образованию трещин, однако вода, адсорбированная на стекле, снижает напряжение, необходимое для растрескивания.  [c.140]

В связи с возникновением в работающей конструкции пластических деформаций весьма существенным является вопрос общих принципов ведения расчета. При пластических деформациях нельзя, как правило, пользоваться методом расчета по допускаемым напряжениям. В этом случае о пригодности конструкции судят либо по величине возникающих перемещений, либо же по величине предельной или разрушающей нагрузки.  [c.355]

Существующие в настоящее время способы экспериментального исследования напряженных конструкций сводятся, так или иначе, к прямому определению деформаций, возникающих в испытуемом объекте. Напряжения определяются косвенно через деформации на основе закона Гука. В случае пластических деформаций определение напряжений при испытаниях конструкций обычно не производится и определяется только разрушающая нагрузка или то значение силы, при котором наблюдаются признаки возникновения пластических деформаций.  [c.506]

Предельное состояние конструкции с группой несвязанных водородных расслоений, образующих область взаимодействующих расслоений, определяют, применяя критерий, аналогичный использованному в [10] для оценки работоспособности труб с глубокими коррозионными язвами. Этот критерий допускает распространение язв в глубь металла на 80% толщины стенки при небольшой площади поражения поверхности. Были проведены испытания давлением стальных сосудов (03-10 мм, длина 10 мм и толщина стенки 19 мм) с водородным расслоением металла на глубине 10 мм со стороны внутренней поверхности. Давление в три раза превышало расчетное разрушающее давление (при условии, что рабочая толщина стенки равна 10 мм). В результате произошла лишь пластическая деформация материала сосудов, что свидетельствует о возможности их эксплуатации при наличии расслоений металла в случае своевременного контроля пораженных участков [24].  [c.129]

Таким образом, в результате ультразвуковых колебаний в тонких слоях контактирующих поверхностей создаются сдвиговые деформации, разрушающие поверхностные пленки. По мере разрушения пленок образуются узлы схватывания, приповерхностные слои металла нагреваются, немного размягчаются и под действием сжимающего усилия пластически деформируются, свариваемые по-вер1сности сближаются до расстояния действия межатомных сил, возникает прочное сварное соединение.  [c.120]

Еще более резкое изменение разрушающего напряжения наблюдается при испытании надрезанных образцов. У них в вершине надреза происходит локализация пластических деформаций, в результате чего потенциал активного растворения устанавливается при значительно более высоких скоростях деформирования. Доказательством того, что именно величина установившегося потенциала определяет влияние скорости деформации на разрушающую нагрузку, являются результаты испытаний на растяжение с различными скоростями с наложением внешней поляризации потенциалом, равным —0,55 В. Результаты испытаний, проведенных В.Ф. Щербининым, показали, что в этом случае независимо от скорости деформации разрушающая нагрузка остается постоянной, равной минимальной разрушающей нагрузке лри.и=  [c.116]

Понимание природы и микромеханизмов П. к. позволяет построить развёрнутую физ. теорию этого явления, даёт возможность не только качественно, но и количественно описывать разл. его аспекты предел текучести, деформац. упрочнение, предельную деформацию, разрушающее напряжение, зависимость скорости иластич. деформации от темп-ры и напряжения, развитие морфология, и кристаллографич. текстур, др. стороны процесса деформирования.  [c.635]

Деформируемость ледебуритных инструментальных сталей сильно зависит от структуры. Ковкость литых или деформированных только с малой степенью обжатия сталей с карбидной эвтектической сеткой весьма плохая. После начальных степеней деформации, разрушающих карбидноэвтектическую сетку, пластичность стали начинает расти.  [c.76]

Как уже указывалось (гл. I), чисто хрупкие разрушоння технических металлов практически не встречаются. Имеющийся опыт испытания гладких образцов конструкционной стали и других пластичных металлов на разрыв или изгиб при низких температурах показывает, что даже при самых низких температурах (например, —196°) разрушение присходит в условиях той или иной степени предшествующей разрушению пластической деформации. Абсолютная величина этой пластической деформации часто такова, что исключает возможность пренебрежения ею. При таких условиях вряд ли правильно считать, что определенное при —196° или другой низкой температуре (не исключающей остаточной деформации) разрушающее напряжение действительно является предельным сопротивлением хрупкому разрушению (сопротивлением отрыву) испытываемого металла.  [c.100]


Сварка ультразвуком. Для получения неразъемного соединения при сварке ультразвуком детали в месте требуемого соединения предварительно сжимают, а затем к зоне контакта с помошь о специального инструмента подводят ультразвуковые колебания частотой от 15 до 170 кгц. В результате в тонких слоях контактирующих поверхностей создаются сдвиговые деформации, разрушающие поверхностные пленки. Тонкие поверхностные слои металла нагреваются, металл в этих слоях размягчается и под действием сжимающего усилия пластически деформируется. При сближении поверхностей на расстояние действия межатомных сил между ними возникает прочная связь.  [c.352]

Рис. 2.7. Схематическое изображение условий зарождения (/), страгивания (2) и распространения (5) микротрещин скола для случая одноосного растяжения при совпадении (а) и несовпадении (б) минимального значения разрушающего напряжения Tmin с пределом текучести, а также температурные зависимости предела текучести a и критической деформации 8 Рис. 2.7. <a href="/info/286611">Схематическое изображение</a> условий зарождения (/), страгивания (2) и распространения (5) микротрещин скола для случая <a href="/info/25667">одноосного растяжения</a> при совпадении (а) и несовпадении (б) минимального значения разрушающего напряжения Tmin с <a href="/info/1680">пределом текучести</a>, а также <a href="/info/493219">температурные зависимости предела текучести</a> a и критической деформации 8
На первом этапе были изучены продольные шлифы гладких цилиндрических образцов, испытанных на растяжение при Т = = —196°С. Согласно разработанной модели, при одноосном растяжении таких образцов их хрупкое разрушение контролируется процессом распространения микротрещин скола. Зарождение же микротрещин скола начинается в соответствии с условием (2.7) при напряжениях и деформациях меньше разрушающих. Однако эти микротрещины при ai < S будут остановлены различными барьерами (границами зерен, границами фрагментов и т. п.). Поэтому на продольном шлифе должны наблюдаться такие остановленные микротрещины, причем их длина может быть различной — от размера зерна (если микротрещина остановлена границами зерна) до размера фрагмента деформацион-  [c.87]

На рис. 2.21 и 2.22 показаны распределения максимальных главных напряжений Oi r) и интенсивности пластической деформации еР(г) в надрезанном сечении образца, отвечающие разрушающей нагрузке, для образцов из стали в исходном и деформированном состояниях. В соответствии с п. 3-,изложеннного. выше алгоритма по пересечению кривых а(еР) и 5с(ер было  [c.103]

Понижение температуры практически не изменяет сопротивления отрт.шу 5от (разрушающего напряжения), но повышает сопротивление пластической деформации о.,. (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разруи1аться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях меньших, чем предел текучести. Точка / пересечения кривых и а,., соответству-юп ан температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости или порога хладноломкости (/п. х)- Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).  [c.53]

Возникающие при наклепе множественные искажения структуры (деформация зерен, местные пластические сдвиги) эффективно тормоза развитие усталостных повреждений и расширяют область существования иераспространяющихся трещин (рис. 196), увеличение которой и обусловливает повышение разрушающего напряжения (кривые 1). Порот трсщино-образования (кривые 2) повышается мало.  [c.319]

До момента наступления критического состояния упругие деформации по величине весьма незначительны и нарастание их происходит почти незаметно для глаза. Но с момента наступления критического состояния до момента разрушения остаточные деформации нарастают крайне быстро, и практически нет времени принять меры по предотвра-щ,ению грозящей катастрофы. Таким образом, при расчете на устойчивость критическая нагрузка подобна разрушающей при расчете иа прочность. Для обеспечения определенного запаса устойчивости необходимо, чтобы удовлетворялось условие  [c.502]

Кинетика изменения максимальных напряжений зависит от свойств материала и находится в соответствии с поведением различных групп материалов при мягком нагружении. Так, в испытаниях циклически упрочняющихся материалов при жестком нагружении амплитуда напряжения вначале возрастает. Интенсивность возрастания с увеличением числа циклов уменьшается. После сравнительно небольшого числа циклов амплитуда напряжений становится практически постоянной на большей части долговечности вплоть до разрушения. Размах установившегося напряжения иногда называют шсимптотическим размахом или размахом насыщения . Предполагают, что каждому размаху деформации соответствует определенный асимптотический размах напряжения. Он берется при числе циклов, равном половине разрушающего, т. е. при средней долговечности.  [c.622]

Курс сопротивления материалов не претендует на то, чтобы точно указать, где и когда следует пользоваться тем или иным из упомянутых методов расчета конкретных конструкций. Сопротивление материалов дает в основном только изложение практически приемлемых средств для решения вопросов, связанных с опре,делеиием напряжений, деформаций, перемещений, разрушающих нагрузок и пр. в типичных элементах конструкции. Вопрос о степени надежности коисарукцнн в конкретных условиях изучается в основном в таких курсах, как курс деталей машин, прочности самолета или курс прочности корабля и т. д.  [c.28]

Г1оскольку при быстром нагружении образование пластических деформаций не успевает полностью завершиться, материал с увеличением скорости деформации становится более хрупким и величина 8 уменьшается. Так как скольжение частиц образца по наклонным площадкам затруднено, должна несколько увеличиться разрушающая нагрузка. Сказанное иллюстрируется сопоставлением диаграмм растяжения при медленно и быстро изменяющихся силах (рис. 67).  [c.73]

Значение 6 можно представить в виде суммы пластического и деструкционного (разрушающего) удлинения. Пластическая деформация обусловлена дислокациями и сдвигом. Деструкция означает возникновение в материале несплошно-стей. Отношение напряжений деструкции ад и для многих пластичных сталей близко к единице Кд = ад/Ов 1,0. Чем больше Кд, тем качественнее сталь.  [c.283]


Смотреть страницы где упоминается термин Деформация разрушающая : [c.224]    [c.143]    [c.103]    [c.115]    [c.217]    [c.90]    [c.335]    [c.66]    [c.73]    [c.77]    [c.87]    [c.146]    [c.141]    [c.244]   
Сопротивление материалов усталостному и хрупкому разрушению (1975) -- [ c.12 ]



ПОИСК



Анизотропия разрушающих деформаций для листовых композиционных материалов малой жесткоАнизотропия некоторых других физических свойств конструкционных материалов

Взаимосвязь сопротивления деформации при одноосном напряженном состоянии и разрушающих напряжений при отколе

Деформации разрушающие в зоне трещин

Дехтяр И. Я., Мадатова 9. Г., Чижек А., Шоб М. Электронная структура дефектов в материалах, разрушенных циклической деформацией

Диски переменной толщины — Определение напряжений и деформаций 327 333 — Расчет методом линейного аппроксимирования 327—330 — Расчет методом последовательных приближений по разрушающим оборотам 333 Расчет

Число циклов допустимое для разрушающих деформаций



© 2025 Mash-xxl.info Реклама на сайте