Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растяжение образцов кольцевых 198201 — Методы

Растрескивание связующего 367 Растяжение анизотропной полосы 217 Растяжение образцов кольцевых 198— 201 — Методы 199, 200  [c.508]

Другой метод оценки — осевое растяжение образцов — характеризует сопротивление материала разрушению отрывом. Основное условие проведения испытания — предупреждение пластической деформации при растяжении образцов, что достигается путем понижения температуры гладких образцов или выполнения на образцах надрезов различной остроты и кольцевых усталостных трещин.  [c.181]


Основная серия испытаний выполнена на цилиндрических образцах с кольцевым надрезом (рис. 2.20) следующих размеров длина рабочей части 35 мм D = 9,5 мм d = 4,75 мм R = = 0,5 мм а = 45°. Деформированное состояние стали для таких испытаний получали растяжением при комнатной температуре гладких образцов диаметром 10 мм до ео=-6 % Затем из этих образцов вырезали образцы с надрезом (рис. 2.20). Образцы полировали электролитическим методом во избежание инициирования хрупкого разрушения от поверхностных дефектов. Деформирование образцов с надрезом осуществляли растяжением при 7 = —196, —140, —100 и —60 С для стали в исходном состоянии и при Т = —196, —100, —60°С для стали в деформированном состоянии. Определяли максимальную нагрузку Ртах и нагрузку Pf в момент разрыва образца. Диаметр образца до и после испытаний измеряли на микроскопе УИМ-23.  [c.101]

Для первой группы методов могут использоваться обычные испытания на релаксацию при изгибе кольцевых образцов, а также кручении и растяжении сплошных цилиндрических образцов. В. А Винокуровым [12 ] проведен анализ возможности распространения результатов подобных испытаний в условиях одноосного напряженного состояния на реальные изделия с плоским и объемным полем остаточных напряжений.  [c.118]

В работах [15, 16] приводятся результаты экспериментальной проверки метода приближенного моделирования несущей способности при переменных нагрузках на основе критериев подобия (10.20). Были испытаны на циклический изгиб при вращении образцы восьми серий из стали 45 диаметром 2а = 50 мм с радиусами надрезов р2 = И 9 7,5 5 3,5 2 1 и 0,5 мм, условно принимаемых за натурные детали. В качестве моделей использовались образцы диаметром 2й1 = 7,5 мм с теми же радиусами кольцевых выточек (рис. 10.6), нагружаемые с помощью пульсатора на растяжение-сжатие. При изготовлении модельных и натурных образцов были приняты меры с целью обеспечения тождественности поверхностных слоев в области кольцевых выточек. Во избежание получения случайных результатов при испытаниях единичных образцов, оценка закономерностей усталостного разрушения натуры и моделей производилась путем построения областей рассеивания сопротивлений усталости.  [c.229]

Стандартизация методов определения характеристик К с и бк трещиностойкости [9, 82, 118, 145] конструкционных материалов требует подбора простых в экспериментальном осуществлении силовых схем разрушения образцов с трещинами, для которых имеются соответствующие теоретические решения. Одна из таких силовых схем — растяжение цилиндрического образца с внешней кольцевой трещиной. В отличие от схемы, когда применяют плоские образцы с трещинами, эта силовая схема реализует локальное состояние плоской деформации вдоль всего кон-тура треЩины, что соответствует расчетным моделям. Кроме того, описанная в гл. VI методика простого изготовления цилиндриче- ских образцов с внешними кольцевыми трещинами также свидетельствует в пользу выбора этих образцов в качестве базовых для определения характеристик К с и бк.  [c.25]


Стандартизация методов определения характеристик трещино-стойкости Ki конструкционных материалов с учетом заданных условий эксплуатации требует подбора таких силовых схем нагружения образцов с трещинами, которые были бы просты в экспериментальном осуществлении и для которых имеются соответствующие теоретические решения о предельном равновесии. Одной из таких силовых схем, на наш взгляд, являются схемы растяжения и изгиба цилиндрического образца с внешней кольцевой трещиной. В отличие от схем, когда применяются плоские образцы с трещинами, силовая схема растяжения цилиндрического образца с кольцевой трещиной реализует локальное состояние плоской деформации вдоль всего контура трещины, что соответствует расчетным моделям, а силовая схема изгиба цилиндрического образца жестко локализует область предразрушения в окрестности контура трещины. Кроме того, предложенная методика изготовления цилиндрического образца с внешними кольцевыми трещинами, а также простота проведения эксперимента свидетельствуют в пользу выбора этих образцов в качестве основных для определения характеристики К и конструкционных материалов.  [c.125]

В настоящей главе в развитие и дополнение известных [9, 29, 331 методов оценки склонности конструкционных материалов к хрупкому разрушению при ударном нагружении изложены новые результаты таких исследований [94, 97,102 —104], а также дается описание установки для регистрации параметров ударного разрушения. При этом описывается методика оценки склонности материала к хладноломкости путем испытания на ударное растяжение цилиндрического образца с кольцевой трещиной, а также показывается применение подобных образцов для ударных испытаний конструкционных материалов.  [c.164]

Проведенные ниже экспериментальные исследования по определению критической температуры хладноломкости путем ударного растяжения цилиндрических образцов с кольцевыми треш,инами показывают, что данный метод является простым и эффективным средством оценки склонности конструкционных материалов к хрупкому разрушению. Поэтому указанный метод может быть рекомендован для широкого использования.  [c.174]

Настоящая рекомендация распространяется на черные и цветные металлы и сплавы, а также на их сварные соединения и устанавливает метод испытания при статическом растяжении или изгибе цилиндрических образцов с кольцевыми трещинами для оценки стойкости материалов против хрупкого разрушения, т. е. для определения его характеристики трещино-стойкости К .  [c.218]

В специальном исследовании [91] выяснялся вопрос о взаимной связи численных характеристик ползучести, определяемых методом кольцевых образцов, и обычными испытаниями на растяжение.  [c.238]

Однако такое идеальное совпадение наблюдается не всегда, повидимому, вследствие неравномерного распределения напряжений в кольцевых образцах. В связи с этим, абсолютные характеристики ползучести, определяемые испытанием на изгиб кольцевых образцов, требуют в ряде случаев дополнительной проверки методом растяжения.  [c.239]

Широкое применение намоточных конструкций привело к разработке многочисленных методов испытания композитов на кольцевых образцах. Это позволяет рассмотреть с единых позиций — по способу нагружения — методы испытаний плоских и кольцевых образцов на растяжение, сжатие, сдвиг и изгиб. Материал для каждого способа нагружения представлен в табл. 7.1—7.8. Обозначения схем нагружения в этих таблицах (например, схема 2—4) используются также в тексте при описании данной схемы нагружения.  [c.189]

Растяжение кольцевых образцов. Наиболее распространенные методы растяжения кольцевых образцов приведены в табл. 7.2. Широко применяется метод растяжения полудисками (схема 2—/). Меньше распространены методы испытания на растяжение колец при помощи равномерного внутреннего давления, создаваемого податливым кольцом (схема 2—3) или гидравлической системой (схема 2—4).  [c.198]


Методы растяжения кольцевых образцов  [c.199]

Сжатие кольцевых образцов. Сжатие колец в их плоскости осуществляется наружным давлением применяемые на практике схемы нагружения и расчетные зависимости приведены в табл. 7.3. Испытания колец на сжатие полудисками (схема 5—/) отличаются от растяжения полудисками тем, что в этом случае удается уменьшить влияние концентрации напряжений в образце около разъема полудисков. Наилучшие результаты достигнуты при испытаниях кольцевых образцов в приспособлениях с полу-обоймами и замками-решетками, которые исключают возможность увеличения горизонтального диаметра образца. Нагружение наружным давлением при помощи податливого кольца (схема 3—2) и гидравлической системы (схема 3—3) проводится аналогично испытаниям на растяжение соответствующими методами. При нагружении образца при помощи податливого кольца последнее для образца является упругим основанием и в некоторой степени повышает критическое давление, при котором образец теряет устойчивость.  [c.201]

Простотой осуществления отличается метод определения прочности межслойного сдвига при растяжении или сжатии призматических или кольцевых образцов с надрезами (рис. 7.8). Однако этому методу свойственны существенные недостатки в случае испытания образцов с несимметрично рас-  [c.214]

Исследование прочности на растяжение сварных колец, полученных таким методом, не прошедших какую-либо термическую обработку, позволило установить, что при качественной сварке прочность стыка не ниже прочности основного металла. Анализ ударной вязкости образцов, вырезанных из сварных кольцевых заготовок, показал, что последняя ниже ударной вязкости основного металла на 30—40%. Однако в технологическом процессе изготовления штампосварных заготовок колец предусмотрены операции, которые значительно улучшают физико-механические характеристики сварного шва. Этими операциями являются полугорячая калибровка в штампе и цементация заготовок колец.  [c.106]

Мы рассмотрели только часть вопросов, которые изучались за истекшее десятилетие с помощью релаксационных испытаний по методу И. А. Одинга. Но даже для этой части вопросов потребовалось провести огромное количество экспериментов понадобилось испытать больше тысячи образцов в течение нескольких тысяч часов каждый. При этом для получения сравнимых данных необходимо было соблюдать для больших партий образцов идентичные температурные и силовые условия. Выполнение этой работы было возможно только благодаря методу И. А. Одинга. Можно без преувеличения сказать, что только благодаря этому методу удалось в сравнительно короткий срок накопить большой фактический материал, который позволил обосновать большинство существующих воззрений на механизм процесса релаксации и влияния на него различных факторов. Поэтому этот метод заслуживает широкого распространения и в дальнейшем. В совокупности с методами испытания на релаксацию в других условиях нагружения, и в первую очередь при растяжении, метод И. А. Одинга можно успешно применять для разработки теории релаксации напряжений в металлах и для оценки релаксационной стойкости материалов. В дальнейшем, когда будет разработан надежный метод корреляции опытных данных, полученных при испытаниях кольцевых образцов на изгиб и цилиндрических образцов на растяжение, метод И. А. Одинга позволит получать непосредственно и количественные значения релаксационных характеристик не только для деталей, работающих на изгиб, но и для деталей, работающих иа растяжение, таких, как болты и шпильки котлов и турбин.  [c.48]

При комнатных температурах испытания неравномерность в распределении пластической деформации по сечению образца с кольцевым надрезом (при испытании на растяжение) установлена опытным путем [3—5]. В подобных испытаниях для учета неравномерности деформаций в местах концентрации напряжений применяется метод делительных сеток, наносимых на поверхность металла [6] с этой же целью применяются тензометры сопротивления [4].  [c.118]

По литературным данным известно, что при испытании на растяжение в условиях ползучести образцов с кольцевыми надрезами неравномерность пластической деформации также имеет место [7]. Однако использование методов измерения пластической деформации на поверхности образца в условиях высоких температур сильно осложняется рядом методических трудностей.  [c.119]

Испытание на растяжение кольцевых образцов. Этот метод был предложен Г. М. Саламатиным и усовершенствован Т. А. Владимирским в качестве способа для неразрушающего контроля материала котлов (метод трепанации), бывших в эксплуатации, и труб. Кольцевые образцы испытывают на обычных разрывных или универсальных испытательных машинах в приспособлении для передачи растягивающего усилия на образец Для более равномерного нагружения кольцевого образца растягивающими усилиями применяют приспособление, создающее в кольце внутреннее давление, что важно при испытании малопластичных материалов .  [c.52]

Оказалось, что результаты испытания кольцевым методом в такой степени совпали с результатами испытания на растяжение цилиндрических образцов, что полученные экспериментальныр точки ложатся практически на одну прямую. Отдельные точки отстоят от логарифмической прямой не более чем на 1 кг/.млг-.  [c.239]

Кроме перечисленных выше методов в экспериментальной механике разрушения для определения предельной пластичности материалов используются более сложные методы испытаний одновременное кручение и растяжение сплошных образцов или трубчатых образцов с внутренним давлением, двухосное и трехосное растяжение, испыташ1е образцов с мягкой прослойкой, кольцевых образцов на радиальное сжатие и т. д.  [c.21]

Прочность и сопротивление КР различных состояний сплавов серии 7000 обычно проверяются путем измерения твердости и электропроводности [147]. Гладкие образцы для испытаний на растяжение, кольцевые образцы или образцы другого типа, вырезанные в высотном направлении, проходят 30-сут испытания в условиях переменного погружения в раствор 3,57о Na l при нагруз-се 75% от гарантированного предела текучести. Сопротивление КР по скорости роста коррозионной трещины (см. рис. 114) для со стояния Т73 (так же как и для состояний Т76 и Т736) должно проверяться на образцах ДКБ за то же или меньщее время. Другой метод быстрой проверки состояния 7075 исследуется. Он базируется на измерении потенциалов в растворах метиловый спирт— четыреххлористый углерод [148]. Такие испытания уже разрабо таны для плит и листов сплавов 7178-Т76 и 7075-Т76 и имеют перспективу в качестве количественного контроля при установлении характеристик КР и расслаивающей коррозии [148]. Процедура испытаний и растворы похожи на те, которые использовались для сплава 2219 (состояния Т851, Т87). Время испытаний также менее 1 ч. Результаты испытаний показаны на рис. 119 и 120. Следует отметить, что сплавы, показывающие в растворе СНзОН/ /сев потенциалы меньшие —400 мВ по отношению к н. к. э., всег-  [c.262]


Кольцевой модуль (КМ) резиновых смесей служит критерием оценки степени вулканизации резиновых смесей. Метод (ГОСТ 412—76) заключается в растяжении кольцевого образца, вулканизированного по режиму, устаповлен-пому для контролируемой резиновой смеси, иод действием заданной нагрузки, и измерении его деформации после заданного промежутка времени.  [c.269]

Стандартизация методов определения характеристик трещиностойкости (у, Ki , бк) конструкционных материалов в реальных условиях эксплуатации требует подбора таких силовых схем нагружения образцов с трещинами, которые были бы просты в экспериментальном осуществлении и соответствовали бы теоретическим моделям механики хрупкого разрушения. Наиболее перспективной из таких силовых схем является растяжение цилиндрического образца с внешней кольцевой трещиной. Цилиндрическими образцами давно пользовались [12, 110, 194, 208, 232, 259] при изучении прочностных свойств конструкционных материалов, в частности для выяснения влияния надреза. Цилиндрический образец обладает тем преимуществом, что его легко изготовить и на нем легко создать исходный кольцевой надрез необходимой глубины и остроты. В отличие от схем, когда применяются плоские образцы, эта силовая схема реализует локальное состояние плоской деформации вдоль всего контура трещины, что соответствует расчетным моделям. Кроме того, цилиндрический образец может быть успешно применен для оценки склонности материала к хрупкому разрушению как при статическом, так и,глри ударном нагружении.  [c.134]

Критическую температуру хладноломкости стали 45Л определяли двумя методами методом построения сериальных кривых зависимости ударной вязкости от температуры испытания и методом построения экспериментальных зависимостей от температуры испытания при ударном растяжении цилиндрических образцов с кольцевыми трещинами. По первому методу за критическую температуру хладноломкости принимали наиболее низкую температуру, при которой указанная сталь еще удовлетворяла значениям ударной вязкости Ян = 3 кПсм , предусмотренным ГОСТ 977-65.  [c.180]

Для исследования этого явления производились измерения напряжений в точках по контуру уширенного образца при этих измерениях все условия, за исключением радиуса перехода, оставались постоянными. В точках такого контура меньшее главное напряжение обращается в нуль и для определения напряжений достаточно либо оптического, либо механического метода первый способ предпочтительнее благодаря легкости его применения в точках по контуру. Некоторые из результатов этих измерений изображены на фиг. 7.155 для образца, увеличенного Б три раза против его натуральной величины, при растяжении под грузом 136,1 кг, вызывающим среднее напряжение 110,0 Kzj M . В каждом случае максимум напряжения оказывается больше 146,9 Ktj M" , но следует отметить, что для крайних случаев получается очень небольшая разница так, при радиусе 0,64 см напряжение поднимается до 151,1 Kzj M при наименьшем же радиусе, какой только можно себе представить, соответствующее напряжение повышается только слегка. Опыты действительно показывают, что хотя кольцевые выступы вызывают местное повышение напряжений, все же форма кривой, по которой они сопрягаются с основной частью образца, не имеет большого значения, если только она не подрежет контура образца.  [c.531]

Для случая малых упругопластических деформаций в работе [42] проведен приближенный анализ напряженного состояния в наименьшем сечении цилиндрического растягиваемого образца с кольцевой гиперболической выточкой (рис. 3.34). Три сплошные кривые соответствуют упругому напряженному состоянию в момент появления пластических деформаций в вершине надреза. Штриховые линии показывают осевые напряжения в пластической области для стадии упругопластнческого деформирования образца (ОС — зона упругих деформаций СМ — пластическая зона). Таким образом, предположение о полном выравнивании напряжений после прохождения пластической деформации (справедливое для тонкого надрезанного образца при плоском напряженном состоянии) является необоснованным для трехосного напряженного состояния, имеющего место в случае цилиндрического (или достаточно толстого плоского) надрезанного образца, даже для идеального упругопластичного материала. Исходя из того, что в центральной зоне надрезанного образца создается трехосное напряженное состояние растяжения, испытание образцов с глубокими кольцевыми надрезами было рекомендовано для определения сопротивления отрыву [42]. Основанные на предположении о малости пластических деформаций решение и метод определения сопротивления отрыву [42] справедливы в том случае, если при испытании образца с кольцевой выточкой не образуется замкнутая пластическая зона (при образовании такой зоны пластические деформации резко возрастают). Замкнутая пластическая зона не образуется у малопластичных материалов.  [c.152]

Оригинальный метод определения сопротивления отрыву, основанный на анализе объемнонапряженного состояния в растягиваемом цилиндрическом образце с круговой выточкой и на измерении наибольшего нормального напряжения в момент разрушения при комнатной температуре, разработан Г. В. Ужиком [106, 110, 111]. По Ужику, сопротивление отрыву, названное им i (j, представляет сопротивление металла такому разрушению, которое не сопровождается сколько-нибудь заметной пластической деформацией на участке действия наибольшего нормального напряжения. Для определения этой величины наиболее целесообразным методом Г. В. Ун<ик считает нагружение всесторонним неравномерным растяжением, которое может быть создано в цилиндрическом образце с кольцевым надрезом определенного профиля, когда у вершины надреза и дальше к центру создается объемно-напря/кенное состояние с разным соотношением главных напряженпй одного и того же знака (oi >02 > оз > 0).  [c.101]

Практическое осуществление этого метода заключается в следующем. Цилиндрические образцы с кольцевым надрезом (диаметр надрезанного сечения 5—10 мм, диаметр непадрезанного сечения 15—18 мм, радиус в вершине надреза 0,3 мм) подвергаются испытанию на растяжение при комнатной температуре с измерением разрушающей нагрузки Р, после чего по величине Р и пределу текучести металла Оо,2, установленному путем пснытанпя на растяжение обычного гладкого образца, определяется по специальным формулам и номограммам сопротивление отрыву R .  [c.101]

Современные волокнистые КМ с однонаправленной, слоистой и пространственной укладкой арматуры являются неоднородными существенно анизотропными материалами. Для этого класса материалов привычные термины — испытания на растяжение, сжатие, сдвиг, изгиб — становятся бессодержательными без указания направления между нагрузкой и осями упругой симметрии исследуемого материала. Поэтому введены две системы координатных осей оси упругой симметрии материала (/, 2, 3) и оси нагружения (х, у, г для плоских образцов 0, г, г — для кольцевых и трубчатых образцов). Предпочтительно пользоваться методами, при реализации которых оси X, у, г (или 0, г, г) тп 1, 2, 3 совпадают.  [c.189]

В работе [203] приведены результаты испытаний титановых сплавов на двухосное растяжение двумя методами путем растяжения осевой силой плоских образцов с узкой двусторонней выточкой (несимметричное осевое растяжение) и путем нагружения внутренним давлением сферических сегментов с плоскими фланцами, защенлен-ными жестко по кольцевому контуру — симметричное двухосное растяжение.  [c.172]


Прочностные и упругие характеристики тел вращения в тангенциальном направлении определяют путем испытаний кольцевых образцов на растяжение двумя полудис-ками (несколькими сегментами) или гидравлическим методом. Преимущества этих методов испытаний состоят в том, что конструкция кольцевых образцов наиболее близка к конструкции натурных деталей.  [c.100]

Исследования последних лет (их краткий обзор дан в работе [102 ]) былп направлены на поиски новых способов нагружения целых и разрезных кольцевых образцов и разработки аппарата для оценки и анализа полученных результатов. Кольцевые образцы испытываются наружным и внутренним давлением, что позволяет оценить их свойства при растяжении — сжатии в направлении армирования, на изгиб сосредоточенными силами — для оценки сдвиговых свойств намоточных материалов. Кольца с прорезями используются для изучения прочности при межслойном сдвиге. Для получения полного комплекса механических характеристик намоточных материалов освоены новые схемы нагружения разрезных колец. Учет особенностей механических свойств современных армированных пластиков привел к пересмотру методов испытаний сегментов кольца.  [c.207]

Детали машин в большинстве случаев имеют сложную форму с резкими изменениями сечений в виде буртов, галтелей, надрезов, отверстий и т. п. Все это вызывает в отдельных частях деталей концентрацию напряжений и является источником возникновения сложного напряженного состояния. Наиболее правильная оценка свойств материалов может быть дана при условии приближения методов испытания к практическим условиям работы. Проведение таких испытаний иногда методически трудно осуш,ествимо и часто связано с большими дополнительными затратами. В связи с этим представляют интерес методы создания в образце сложного напряженного состояния при обычных испытаниях на растяжение. Одним из таких методов является нанесение на цилиндрический образец кольцевого надреза. Изучение характера разрушения материала и процесса распространения пластической деформации в месте надреза может содействовать выяснению общих закономерностей пластической деформации при сложном напряженном состоянии.  [c.117]


Смотреть страницы где упоминается термин Растяжение образцов кольцевых 198201 — Методы : [c.301]    [c.274]    [c.35]   
Композиционные материалы (1990) -- [ c.199 , c.200 ]



ПОИСК



Образцов



© 2025 Mash-xxl.info Реклама на сайте