Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллическая решетка металла

КРИСТАЛЛИЧЕСКИЕ РЕШЕТКИ МЕТАЛЛОВ  [c.22]

Следует отметить затруднения в применении и расчете условия сплошности для тонких, в частности эпитаксиальных, т. е. ориентированных относительно кристаллической решетки металла, пленок.  [c.33]

Основными механическими свойствами материала, характеризующими разрушение образца, являются критическая деформация (или предельная пластичность) е/ и истинное разрушающее напряжение 5к. В различных металлах зависимости ) Т) и Sk T) ведут себя различно. Во многом это определяется типом кристаллической решетки металла. У металлов с гране-центрированной кубической решеткой (ГЦК металлов) температурная зависимость механических свойств в широком диапазоне температур [211, 242, 243] практически отсутствует. Примерно так же ведут себя и предельные характеристики е/ и 5к в пластичных металлах с гексагональной плотноупакованной решеткой (ГПУ металлах), например в а-титане, хотя влияние температуры сказывается на них сильнее [211].  [c.51]


Склонность металлов и сплавов к коррозионному растрескиванию зависит от их химического состава, от свойств, формы, характера распределения и величины поверхности структурных составляющих. Значительное влияние на коррозионное растрескивание оказывают также процессы диффузии, вызывающие перемещение атомов в кристаллической решетке металла. Характер распространения коррозионных трещин бывает самым разнообразным.  [c.102]

Основными несовершенствами кристаллической решетки металлов считают точечные, линейные и поверхностные.  [c.16]

Фазы внедрения возникают при взаимодействии металлов переходных групп с металлоидами, у которых незначительные атомные размеры Н(г=0,046 нм), Ы(г=0,071 нм), С(г=0,077 нм). Внедрение атомов металлоидов в кристаллическую решетку металлов (образование фаз внедрения) может проходить при условии, если отношение г металлоида к г металла меньше или равно 0,59. При этом атомы металла образуют решетки типа К8, К12 и Г12, а атомы металлоидов внедряются в них в определенном порядке, характеризующемся координационным числом. Практически в сплавах металлов фазы внедрения не соответствуют стехиометрической формуле (в избытке атомы металла и в недостатке атомы металлоидов), т. е. происходит образование твердых растворов вычитания, Фазами внедрения в сталях и сплавах являются большинство карбидов и нитридов.  [c.33]

Плоскостями скольжения являются плоскости кристаллической решетки с наибольшей атомной плотностью, поскольку вдоль этих плоскостей сопротивление скольжению наименьшее. В зависимости от формы кристаллической решетки металла (сплава) таких плоскостей может быть одна или несколько.  [c.80]

Как показано на рис. 7.8, начиная от температуры / .р возможны перемещения атомов в кристаллической решетке металла и рекристаллизационные процессы.  [c.85]

Как указывалось ранее, кристаллическая решетка металла, подвергнутого холодной обработке давлением, искажается в ней возникают напряжения, повышается количество дефектов решетки изменяется тонкая структура металла — блоки мозаики измельчаются, зерна металла раздробляются, а равноосная форма их (наблюдавшаяся до деформации) теряется. Осколки зерен получают продолговатую форму, вытягиваясь в направлении действия деформации при растяжении и перпендикулярно к направлению при сжатии. Кристаллические решетки зерен приобретают определенную пространственную ориентировку, называемую текстурой деформации. Микроструктуру металла после холодной деформации называют волокнистой.  [c.87]


Некоторые из предложенных объяснений склонности ферритных нержавеющих сталей к межкристаллитной коррозии основаны на разнице скоростей растворения различных образующихся карбидов или на предполагаемой большей реакционной способности напряженной кристаллической решетки металла. Однако наиболее убедительное объяснение получено с помощью теории, широко используемой для объяснения этих явлений в аустенитных нержавеющих сталях. Согласно этой теории, разрушения происходят вследствие обеднения границ зерен хромом [36—38]. Различия в температурах и времени, необходимых для сенсибилизации этих сталей, объясняются более высокими скоростями диффузии углерода, азота и хрома в ферритной объемно-центрированной кубической решетке по сравнению с аустенитной гранецентрированной. В соответствии с этим, карбиды и нитриды хрома, которые растворены при высокой температуре, ниже  [c.310]

Установлено [17], что значения твердости поверхности железа в процессе наводороживания достигают максимума, а затем уменьшаются. Это связывают с тем, что молекулярный водород сначала деформирует кристаллическую решетку металла в местах прилегания к поверхности микропустот, заполненных водородом, в результате чего твердость повышается, а затем в процессе дальнейшего наводороживания вызывает растрескивание и разрыхление поверхности, которое приводит к снижению твердости.  [c.15]

С приближением температуры к абсолютному нулю удельное сопротивление монокристаллов становится очень малым. Этот факт свидетельствует о том, что в идеальной кристаллической решетке металла электроны перемещаются под действием электрического поля, не взаимодействуя с ионами решетки. Длина их свободного пробега при этом может достигать значений порядка 1 см, т. е. в 10 —10 раз превышает межатомные расстояния в кристалле. Электроны взаимодействуют лишь с ионами, не находящимися в узлах кристаллической решетки.  [c.152]

Теоретический анализ показал, что таким взаимодействием является притяжение между электронами, которое осуществляется через колебания решетки. Как представить себе такое взаимодействие В узлах кристаллической решетки металла находятся положительно заряженные атомные остовы. Электрон в такой решётке стремится притянуть к себе положительные ионы. Таким образом, в окружающей электрон области происходит скопление положительных зарядов. Принято говорить, что под действием отрицательного заряда электрона решетка поляризуется. Второй электрон, находящийся неподалеку, притягивается к поляризованной области, а следовательно, к первому электрону. Конечно, между электронами существует и кулоновское отталкивание, однако если притяжение окажется сильнее отталкивания, то результирующим взаимодействием станет притяжение.  [c.267]

Остаточное сопротивление металлов. При не очень низких температурах электрическое сопротивление металлов обусловливается главным образом рассеянием электронов на атомах кристаллической решетки металла. В результате актов рассеяния электронов происходит в среднем передача энергии от электронов к атомам кристаллической решетки. Передача энергии обусловливает возникновение электрического сопротивления. Атомы колеблются в узлах кристаллической решетки, и полученная ими энергия преобразуется в энергию колебаний. Колебания решетки описываются как возбуждения твердого тела, называемые фононами, а вся совокупность колебаний успешно описывается понятием фононного газа. Электрическое сопротивление в этой картине является результатом элект-рон-фононного взаимодействия.  [c.370]

Изменение р при упругих деформациях объясняется изменением амплитуды колебаний узлов кристаллической решетки металла. При растяжении эти амплитуды увеличиваются, при сжатии — уменьшаются. Увеличение амплитуды колебаний узлов обусловливает уменьшение подвижности носителей зарядов и, как следствие, возрастание р, Уменьшение  [c.13]


Оксидный слой, непосредственно прилегающий к металлу, является рыхлым, структурно подстраивающимся под кристаллическую решетку металла. Но по мере роста этого слоя упорядочивается его кристаллическое строение и уменьшается скорость его образования, поскольку сам оксидный слой является тормозом для выхода металлических катионов и молекул кислорода навстречу друг другу [30 .  [c.59]

В первом случае атом внедряется при переходе из узла решетки в междуузлие на месте ушедшего атома образуется вакансия. Этот тип дефекта называется дефектами Френкеля. Энергия образования этих дефектов примерно равна сумме энергии образования вакансии и внедрения. При образовании дефектов Френкеля энергия кристалла возрастает, так как атом проникает в область, где силы отталкивания между внедренным атомом и окружающими его атомами очень велики кристаллическая решетка металла упруго деформируется.  [c.32]

Диффузией называется закономерное перемещение атомов элемента в кристаллической решетке металла. Процессы диффузии лежат в основе многих превращений, наблюдающихся в металлах и сплавах (рост зерна, полиморфное превращение, отдых и рекристаллизация, гомогенизирующая термическая обработка, дисперсионное твердение, химико-термическая обработка, спекание металлических порошков, сварка давлением и др.).  [c.52]

Рис. 48. Рассеяние электронной волны кристаллической решеткой металла Рис. 48. <a href="/info/13768">Рассеяние электронной</a> волны <a href="/info/12569">кристаллической решеткой</a> металла
Характерными признаками твердого раствора являются 1) однородность микроструктуры 2) кристаллическая решетка соответствует типу кристаллической решетки металла-растворителя 3) наличие металли-  [c.90]

Под действием пластической деформации происходит изменение структуры металла и его физико-механических свойств. Возникает определенная ориентировка кристаллический решетки металла (текстура). Зерно деформируется, вытягивается в направлении течения металла, сохраняя ту же площадь поперечного сечения.  [c.90]

Предполагается, что для возникновения иассиниого состояния нет необходимости в полном заполнении всей поверхности адсорбированными кислородными атомами для этого достаточно адсорбции кислорода только на наиболее активных анодных участках (по углам и на ребрах кристаллическо решетки металла). В этом варианте адсорбционная теория является как бы дальнейшим развитием пленочной теории при допущении нарушения сплошности защитного слоя.  [c.64]

Жаропрочность стали и других металлических сплавов сильао зависит от величины сил межатомной связи. Она тем вьш]е, чем больн1е межатомные силы связи в кристаллической решетке металла, па базе которого построен сплав. В первом [ риближеиии можно считать, что чем выше температура плавления металла, тем больше сила межатомных связей и выше температурный уровень применения этих сплавов  [c.287]

При жестком облучении нейтронами или другими высокоэнергетическими частицами кристаллическая решетка металла претерпевает изменения, напоминающ,ие те, что происходят при глубокой холодной деформации. Появляются вакансии в решетке, меж-узельные атомы, дислокации это увеличивает скорость диффузии специфических примесей или легируюш,их компонентов. В процессе облучения может происходить локальное повышение температуры — так называемый температурный пик . Существуют два типа пиков термические, при которых практически все атомы остаются на своих местах в решетке, и пики смещения, когда множество атомов перемещается в междоузельные положения.  [c.154]

Рентгеноструктурным анализом на установке ДРОН-2 показано, что относительная микродеформация кристаллической решетки металла околошовных зон при сварке с подогревом составляет около (2ч-1,1)-Ю , при сварке с РТЦ -(1,5- -1,6)-10 , при этом микродеформация основного металла  [c.153]

Можно ли рассматривать дефекты кристаллической решетки металлов в качестве неотъемлемых структурньи образований Объястггь причину ответа.  [c.376]

До квантовой механики (и даже после ее полного ста новления) в научно-исследовательской практике очень большое хождение имело представление об эффективных радиусах атомов, проявляющихся в их действиях, т. е. в химических соединениях. Эффективные радиусы определяли из экспериментальных данных о межъядерных расстояниях в молекулах и кристаллах. Предполагалось, что атомы представляют собой несжимающиеся шары, которые соприкасаются своими поверхностями. При определении значения эффективного радиуса из межъядерных расстояний в ковалентных молекулах подразумевали ковалентные радиусы, при вычислении их из данных для металлических кристаллов — металлические. Эффективные радиусы, найденные из кристаллов с преимущественно ионной связью, назывались ионными. Металлические и ковалентные радиусы вычислялись как половина межъядерного расстояния между центрами двух смежных атомов в кристаллической решетке металла или кристалла соответствующего простого вещества.  [c.20]

Другим примером пространственных диссипативных структур является так называемая решетка вакансионных пар, экспериментально обнаруженная Дж. Эвансом в 1970 г. при исследовании микроструктуры молибдена, облученного ионами азота. Известно,, что облучение металла быстрыми частицами (нейтронами, ионами) приводит к образованию в кристаллической решетке точечных дефектов — вакансий и межузельных атомов. При повышении температуры эти вакансии, двигаясь в кристалле, образуют сложные кластеры дефектов в виде сферических вакансионных пор и плоских дислокационных петель. Обычно такие кластеры образуют пространственно однородную систему. Однако при определенных условиях облучения вакансионные поры располагаются упорядоченно в виде правильных сверхрешеток , тип которых совпадает с типом кристаллической решетки металла и имеющих период, в сотни раз превыщающий период этой рещетки. Образование таких упорядоченных структур вакансионных пор вызвано нелинейным динамическим взаимодействием точечных дефектов с мелкими вакансионными кластерами и диффузионным взаимодействием между порами.  [c.34]


Кристаллическая решетка Металл Наиболее вероятный механизм Альтернативный иеханнзы  [c.478]

Рентгеновский метод определения напряжений основан на замере расстояния между атошвйи кристаллической решетки металла. Это расстояние может метяться по двум причинам вследствие температурного и вследствие силового воздействия. В ненапряженном состоянии расстояние между атоматяя известно. Сопоставляя это расстояние с замеренным, находим относительное удлинение и, вводя температурную поправку, определяем напряжение.  [c.486]

Она нс вызывает заметных остаточных изменений в сгруктуре н свойствах, металла, происходит незначительное по величине и обратимое изменение расстояний между атомами в кристаллической решетке металла (рис. 14) С увеличением межатомных расстояний значительно возрастают силы взаимного притяжения атомов. При снятии напряжений под действием сил прит.я-жения атомы возвращаются в исходное положение и упругая деформация исчезнет, Нормальные напряжения могут вызвать только упругую деформацию  [c.21]

Сопротивление отрыву для железа, по данным различных авторов, теоретическое - 12000.. 100000 1 /[Па, реальное - 300 МПа. Теоретическая прочность соответствует идеальной бездефектной кристаллической решетке металла (рис. 19). При определенном количестве дефектов металл имеет минимальную прочность (точка 1).С уменьшением количества дефектов прочность возрастает. Прочность нитевидных бездислокационных кристаллов усов приближается к теоретической. Оки имеют почти идеальную поверхность без шероховатостей (не обнаруживается при увеличениях в десятки тысяч раз). Так, ус железа толщиной 1 мкм имеет- предел прочности порядка 1,35 МПа, т.е. почти теоретическуто прочность, однако пока длина уса не превыпгает 15 мм, и практическое применение их ограничено, например, армирование сапфировыми или графитовыми усами тугоплавких метал-  [c.25]

В твердых растворах внедрения атомы растворимого элемента распределяются в кристаллической решетке металла-растворителя, занимая места между его атомами. Разместиться в таких пустотах могут только атомы с очень малыми размерами. Наименьшие размеры атомов имеют некоторые металлоиды и водород, азот, углерод, бор, которые и образулот с металлами твердые растворы внедрения.  [c.31]

Эффект синергизма достигается при совместном введении в электролит производных пиридина или анилина, с галогенид- ионами. По повышению защитного действия галогенид-ионы можно расположить в ряд J", Вг", СГ, т.е. в последовательности, обратной изменению их энергии гидратации, Дж/моль 353 для СГ 319 для Вг и 268 для J , так как более гидратированные поверхностные комплексы с галоидом, например, с ионом хлора, легко теряют связь с атомами кристаллической решетки металла и переходят в раствор. Анионы с меньшей энергией гидратации, хемосорбируясь на поверхности металла, теряют гидратированную воду и приобретают свойства защитной пленки. Резко возрастает защитный эффект от введения -аминов и некоторых других ингибиторов катионного типа при наличии в кислой среде сероводорода, тогда как в аналогичной среде без сероводорода эти же соединения являются слабыми ингибиторами коррозии. В таких случаях адсорбированные на поверхности железа анионы СГ, Вг", J", HS выполняют роль анионных мостиков, облегчающих адсорбцию ингибиторов катионного типа.  [c.144]

Дефекты после радиационного облучения. Из множества элементарных частиц и излучений, возникающих при распаде ядерного топлива (нейтроны, протоны, дейтроны, электроны, позитроны, а-частицы Р- и y-из-лучения), наибольшее влияние на свойства конструкционных материалов оказывают нейтроны. Из-за отсутствия заряда нейтроны проникают в кристаллическую решетку металла, вызывая в ней существенные изменения. Наиболее сильно влияют на свойства металлов быстрые нейтроны, нейтроны, обладающие энергией выше 0,5 эв, которые, попадая в кристаллическую решетку с энергией в несколько десятков тысяч электроно-вольт, упруго сталкиваются с ядром ионизированного атома. Атом, получив энергию, при смещении из узла решетки перемещается в междоузлие. Таким образом, в кристаллической решетке возникает вакансия и внедренный в междоузлии атом.  [c.38]

Температура перехода из твердого состояния в жидкое зависит от энергии связи между атомами в кристаллической решетке металла. При температуре плавления зна ЧИтельная часть связей между атомами нарушается время взаимодействия атомов становится малым, соизме римым с временем оседлой жизни атома (2—3 колебания) и твердый металл переходит в жидкую фазу.  [c.42]

Существует два вида диффузии самодиффузия и гетеродиффузия. Самодиффузия — диффузия атомов элементов в своей собственной кристаллической решетке при отсутствии градиента концентрации. Гетеродиффузия — диффузия атомов постороннего элемента в кристаллической решетке металла. Гетеродиффузия происходит при наличии градиента концентрации. Диффузия атомов как в первом, так и во втором случаях возможна при условии, что диффундирующий атом будет иметь достаточный sania энергии для миграции в кристаллической решетке.  [c.52]

При любой температуре средняя энергия колебаний атомов в кристаллической решетке металла фиксирована. Однако энергйя колебания отдельных атомов изменяется согласно законам теории вероятностей. Каждый атом, находясь в состоянии непрерывных тепловых колебаний, сталкивается с соседними атомами, причем при каждом  [c.52]


Смотреть страницы где упоминается термин Кристаллическая решетка металла : [c.151]    [c.308]    [c.332]    [c.35]    [c.19]    [c.62]    [c.22]    [c.17]    [c.53]    [c.105]   
Температура и её измерение (1960) -- [ c.158 ]



ПОИСК



Атомно-кристаллическое строение металлов и сплаКристаллические решетки металлов

Атомно-кристаллическое строение металлов. Основные типы кристаллических решеток

Дефекты кристаллической решетки в металлах при сварке

Дефекты кристаллической решетки металлов

Коррозия металлов, аминнрование кристаллических решеток

Кристаллическая решетка

Кристаллические

Кристаллические решетки ионные Энергия чистых металлов

Кристаллические решетки металло

Кристаллические решетки металло

Особенности пластической деформации в металлах с различным типом кристаллической решетки

Переходные металлы кристаллическая решетка

Природа пластической деформации и дефекты кристаллической решетки металлов

Роль в усталостном поведении металлов энергии дефекта упаковки и типа кристаллической решетки

Статистика электронов в кристаллической решетке металла

Теория точечпых дефектов кристаллической решетки металлов и сплавов Виды дефектов кристаллической решетки и их влияние на свойства металлов и сплавов



© 2025 Mash-xxl.info Реклама на сайте