Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура литого цинка

Сплавы магния легируют марганцем, алюминием, цинком, цирконием, литием, бериллием, редкоземельными элементами. Мп повышает коррозионную стойкость сплава и одновременно увеличивает его прочность. Д1 и Zn увеличивают прочность и модифицируют (измельчают) структуру литых сплавов. Наиболее интенсивно измельчает зерно Zr, кроме того, он увеличивает пластичность. Значительно увеличивает пластичность Li, к тому же он снижает плотность сплава, Введение малых количеств Be (0,005. .. 0,02 %) почти полностью исключает воспламенение магния при нагреве. РЗЭ увеличивают сопротивление ползучести сплава при высоких температурах (до 250 С).  [c.112]


Рис. 108. Структура сплава нейзильбер (твердый раствор цинка и никеля в меди). ХЮО. (А. А, Бочвар) а —в литом состоянии б — после диффузионного отжига Рис. 108. <a href="/info/57797">Структура сплава</a> нейзильбер (<a href="/info/1703">твердый раствор</a> цинка и никеля в меди). ХЮО. (А. А, Бочвар) а —в литом состоянии б — после диффузионного отжига
В области практического применения сплавов лития с цинком разработано несколько предложений 87—92, 98. 106. 107]. Добавки лития в количестве около 0,005% заметно улучшают структуру цинковых сплавов, уменьшая размер зерна. Очевидно, характер улучшения качества сплавов, такой же, как и в случае магния. Вследствие низкого эквивалентного веса литий требуется в меньшем количестве, чем магний, и часто приводит к более значительному улучшению качества сплавов.  [c.366]

Интервал температур кристаллизации сплава МЛ5 607—492 °С. Широкий интервал температур кристаллизации и одновременно быстрое охлаждение сплава обеспечивают получение отливок с мелкозернистой структурой, характеризующихся высоким относительным удлинением и хорошей ударной вязкостью. Сопротивление ударным и вибрационным нагрузкам не снижается даже при отрицательных температурах. Поэтому литьем под давлением из сплава МЛ5 изготовляют такие детали, как рукоятки бензопил и буров. Опыт литья деталей из сплава с повышенным содержанием цинка (до 2%) показал, что, несмотря на высокую жидкотекучесть, этот сплав неприемлем для литья под давлением из-за его чрезмерной хрупкости в горячем состоянии. Наилучшие сочетания механических свойств имеют сплавы, содержащие не более 0,3% Zn. В европейские стандарты включены магниевые сплавы, вообще не содержащие цинка, предназначенные для изготовления отливок, работающих при больших ударных нагрузках.  [c.29]

У цинка (табл. 100) гексагональная структура. Этим объясняется резкая анизотропия его свойств. Прочностные свойства в поперечном (к прокатке) направлении значительно выше, чем в продольном. При комнатной температуре цинк в литом состоянии малопластичен, а при 100—150° С становится пластичным и может быть подвергнут обработке давлением — прокатке, прессованию, штамповке и глубокой вытяжке.  [c.498]

Средние скорости нагрева и охлаждения такие же, как и в предыдущих опытах. Электрическая проводимость этих сплавов не остается постоянной при термоциклировании (рис. 2.19). Не изменяется только электрическая проводимость сплава, содержащего 3 % 2п, у которого цинк в исходном состоянии, по-видимому, находится полностью в растворенном виде. Рост электрической проводимости сплавов, содержащих от 7,8 до 19,2% 1п, по мере увеличения числа циклов п свидетельствует об интенсивной диффузии цинка в твердый раствор и уменьшении концентрационной неоднородности. Последнее подтверждается данными, полученными при сканировании по шлифу на микроанализаторе JXA-5A (рис. 2.20). В литом состоянии в сплаве, содержащем 19,2 % 2п, наблюдается значительная ликвация цинка. По мере нарастания числа циклов неравномерность распределения его уменьшается, и по достижении 20 циклов весь цинк распределяется в образце практически равномерно. На рис. 2.21, а, показана структура сплава, содержащего  [c.53]


Характерно, что с увеличением количества цинка в сплаве интенсивность роста электрической проводимости от цикла к циклу увеличивается, Электрическая проводимость сплава, содержащего 34 % 2п, в первых 10 циклах резко снижается. При дальнейшем увеличении числа циклов скорость ее снижения заметно падает, но полной ее стабилизации не наступает. Структура этого сплава показана на рис. 2.21,6. В литом состоянии основная масса цинка сконцентрирована вдоль границ зерен. ТЦО рассредоточивает цинк по всему объему. Различие закономерностей изменения электрической проводимости сплавов с содержанием до 19,2 и 34 % 2п хорошо согласуется с литературными данными [4]. В соответствии с ними в сплавах к —1х, содержащих не более 20 % 2п, снижение электрической проводимости, приходящейся на 1 % 2п, примерно в 2,5 раза больше, если он находится в виде отдельной фазы, а не в твердом растворе (табл. 2.1). При более высоком содержании цинка имеет место обратная закономерность цинк, находящийся в твердом растворе, понижает электрическую проводимость в большей степени, чем такое же его количество, но присутствующее в виде отдельной фазы.  [c.55]

С целью разработки ускоренного способа фосфатирования нами и было подробно изучено влияние па процесс фосфатирования стали, а также цинка, различных нитратов и азотной кислоты [99—102]. Для исследования в качестве добавок были взяты нитраты натрия, калия, лития, аммония, магния, марганца, цинка, кадмия, кальция, стронция, бария, кобальта, никеля, алюминия, хрома и железа. Определялось их влияние на кислотность раствора К , И Г,., а также pH), скорость пленкообразования (продолжительность выделения водорода и определение его объема специальным прибором), цвет, вес, толщину, структуру (микрогеометрию) и защитные свойства фосфатной пленки. Действие каждой добавки изучалось при концен-  [c.84]

Для ускорения получения пленок аморфного типа предложено [128] добавлять к цинкфосфатному раствору нитраты лития, бери-лия, магния, кальция, стронция, кадмия или бария. Пленка образуется за 3—5 мин она не имеет видимой кристаллической структуры при увеличении в 100 раз (размер кристаллов не превышает 5 мкм) и состоит из смеси фосфатов цинка и добавляемого элемента,  [c.159]

Микроструктура а + р-латуни с содержанием цинка 40% в литом состоянии дана на рис. 22.6. Структура похожа на видманштеттову структуру литой стали.  [c.167]

Наиболее прочными сплавами на основе цинка являются тройные сплавы Zn—А1—Си. Структура этих сплавов весьма разнообразна (зависит главным образом от соотношения п количества алюминия и меди) и состоит из первичных выделений р (чистый цинк), а (раствор на базе алюминия, богатый цинком) или е (химические соединения Си2пз), двойной эвтектики Р+а, е+ +а или p-t-8 и тройной эвтектики a-fP + e, Например, литой силав с 5% А1  [c.629]

Для выявления структуры р-латуни пригодны реактивы 15—18, приведенные выше. Радон и Лоренц [16] применили для литого сплава с содержанием 53,9% меди и 45,7% цинка, который располагается в р-области системы медь—цинк близко к а-границе, описанные ниже растворы для выявления границ и поверхности зерен. Для травления границ зерен Радон и Лоренц рекомендуют бромную воду. Продолжительность травления составляет 20 с. Кроме того, в этом случае пригодны реактивы 15 и 16 (гл. XIII).  [c.201]

Ряс< 4.80. Влияние содержания Sn и Zn н сплавы меди а) влияние содержания Sn на свойства оловя-ниетой литой бронзы б) влияние процентного содержания цинка на свойства литой латуни (Туркин Ф.Д. н Румянцев М. В..Структура и свойства цветных металлов, Метал-лургиздат, 1947].  [c.322]

При добавлении к свинцу 0,05% или меньшего количества лития значительно улучшаются литейные и физические свойства свинца, который становится более вязким и твердым, сохраняя удовлетворительную пластичность. В то же время значительно повышаются предел прочности при растяжении и модуль упругости. Кроме того, присутствие лития в свинце обеспечивает более мелкозернистую структуру и замедляет рекристаллизацию. Гарре и Мюллер (391 сравнивали влияние добавок различных элементов, например меди, сурьмы, олова, никеля, цинка и магния, с влиянием добавок лития на размер зерен и твердость свинца. Результаты, полученные этими исследователями, ясно показывают, что из всех испытанных элементов литий придает свинцу наиболее мелкозернистую структуру и наибольшую твердость. Кох [72] предложил применять сплавы лития и свинца, особенно те, которые содержат небольшие добавки кадмия или сурьмы, для изготовления кабельных оболочек. Он установил, что свинец, содержащий 0,005% лития, имеет значительно более высокий предел прочности при растяжении по сравнению с чистым свинцом.  [c.367]


Предплавлеиие, предсказанное Борелиусом, найдено в нескольких органических материалах и нескольких тио-цианатах происходит предварительный распад структуры перед плавлением [559]. Уже говорилось об увеличении концентрации вакансий в щелочных металлах ниже точки плавления. Карпентер [562, 563J сообщает об аномальном поведении удельной теплоемкости у лития, калия и натрия в интервале температур на 50— 100 град ниже точки плавления, возможно, вызываемом образованием вакансий. Сообщается о подобной же странности в физических свойствах висмута, цинка, кадмия [565], олова, кадмия [566], магния [566, 567], индия, калия [568] и алюминия, золота и серебра [569]. Несомненно, некоторые из этих аномалий связаны с местным плавлением, вызываемым примесями [573, 574] (образование частиц жидкости в твердой фазе не представляет проблемы, так как при этом увеличивается энтропия), которые стремятся скопиться в уже отчасти разупорядо-ченных местах решетки (дислокации и скопление дефектов).  [c.159]

Причина затруднений, часто возникающих при гальванической обработке деталей из цинкового литья под давлением, заключается в реакционной способности цинка и в характерной структуре цинкового литья под давлением. Наружная поверхность и механические свойства отливки всегда находятся. в причинной зависимости от структуры материала, с одной стороны, и От плотности литья, с другой таким образом, они зависят от услов1ий изготовления. До настоящего времени твердо не установлено, отличаются ли по своему поведению при гальванической обработке детали, изготовленные машинами с холодной камерой, от деталей, изготовленных машинами с горячей камерой. Оба вида литейных машин производят отливки как хорошо воспринимающие в дальнейшем гальваническую обработку, так и отливки, идущие в брак. Эта разница в качестве определяется не тех нологией отливки детали, а зависит от рациональной конструкции формы, прав ильного выбора и устройства разъема формы, а также от температуры разливки и температуры формы.  [c.322]

Для сравнения было исследовано поведение стержня из литого хрупкого металла, илюнно цинка, обнаружившего при охлаждении резко вы раженную характерную структуру (фиг. 481). Цинковый стержень квадратного сеченпя отливался в изложнице и подвергался кручению на предназначенной для этой цели машине.  [c.581]

Структура сплавов с 7—10% 8п в литом состоянии — зерна а-твердого раствора и участки эвтектоида (а + Сиз8п). Из-за присутствия эвтектоида эти сплавы не деформируются. Количество эвтектоида в структуре тем больше, чем выше концентрация олова и легирующих элементов цинка, никеля и фосфора, которые не образуют новых фаз и присутствуют в а-растворе.  [c.323]

Нормальное пламя применяется также при сварке никеля. При сварке магния, алюминия и цинка, не восстанавливающихся газами пламени, для связывания окислов необходимо применение не только нормального пламенп. но II флюсов, содержащих химически действующие компоненты или физические растворители. Исключение составляют латуни, газовая сварка которых производится обычно окислительным пламенем с отношением Р = 1,4, при котором на поверхности расплавленной латуни образуется пленка окпсп цинка (ZnO), предохраняющая сварочную ванну от дальнейшего испарения и окисления цинка. Большое ко.личрство теплоты, вводимой в металл при газовой сварке, п значительная ширина зоны теплового влияния пламени создают условия медленного охлаждения металла и способствуют возникновению в нем крупнокристаллической структуры с равноосными неправильной формы зернами, типичными для литого металла  [c.307]

В нек-рых неответственных случаях в качестве присадочного материала применяются сплавы из никеля, меди, железа, марганца и алюминия в различных пропорциях. Иногда в качестве присадочного материала употребляют т. н. бронзу Тобина, к-рая состоит из меди (69—63%), олова (0,5—1,5%) и цинка (40,5— 35,5%). Темп-ра плавления этого сплава достигает 870, так что в данном случае происходит уже не сварка, а пайка. Сущностью горячей газовой заварки, как говорилось выше, является предварительный подогрев отливки, исправление и затем медленное охлаждение в специальной печи. Самый процесс горячей газовой заварки ничем не отличается от заварки холодной. Для доброкачественности отливки заваренную деталь полезно перед охлаждением еще раз нагреть докрасна и лишь затем охладить окончательно. Большое употребление получила дуговая заварка, в особенности тех мест литья, к-рые не подвергаются дальнейшей механич. обработке. При дуговой заварке расплавляющая отливку вольтова дуга зажигается мешду отливкой и специальным электродом, одновременно служащим и присадочным материалом. После очистки литье подвергается иногда термич. обработке. Стальное литье (см.) и ковкий чугун (см. Чугун ковкий) обязательно отжигаются. Серое чугунное литье, особенно высококачественное, и легированное (см. Чугунное литье) такше м. б. подвергнуто термич. обработке аналогично стали, причем структура чугуна феррито-графито-цементи-товая переходит в структуру перлито-графитную с повышением механич. качеств. Бронзовое и алюминиевое литье такше м. б. улучшено посредством термич. обработки (см. Цеептюе литье).  [c.97]

Результаты измерений теплопроводности, электросопротивления и соотношения Видемана — Франца — Лоренца металлокерамических материалов на основе железа приведены на рис. 2 и 3. Кривые температурной зависимости удельного электросопротивления р исследованных композиций, приведенные на рис. 2 а (кривые 3—8), во всем исследованном диапазоне температур имеют свойственный для металлов монотонно возрастающий характер. На том же рисунке (кривая 1) для сравнения приведены значения р = / (Г) компактного железа (чистота 99,95%), взятые из [7 , и литого армко-железа, полученные экспериментально. График ноказЕ) -вает, что количественно электросопротивление рассматриваемых композиционных материалов значительно превышает значения электросопротивления компактного железа. Высокое удельное электросопротивление композиций объясняется не только наличием пористости, уменьшающей ек тивное поперечное сечение образцов, хотя ее влияние и является доминирующим, но и характером структуры и значительными контактными сопротивлениями на границах раздела фаз, что подтверждается повышенными значениями сопротивления исследованных пористых образцов, пересчитанными по [8] на беспористое состояние (кривые 9, 10). Кривая 10, в частности, превышает кривую 2 на 9—11%, что, очевидно, вызвано наличием переходных контактных сопротивлений на границе зерен. Немаловажную роль играет также состав композиций. Так, введение в состав порошка железа 3% графита при одинаковой пористости композиций приводит к повышению р материала на 7—8% (кривые 9—10), Это вызвано уменьшением площади металлического контакта на единицу площади поперечного сечения образца и повышением сопротивления самой металлической матрицы [9] вследствие взаимодействия железа с графитом и образования перлитной структуры. Легирование железографита 4% сернистого цинка несколько снижает сопротивление композиции, хотя сам сульфид цинка имеет сравнительно высокое значение р [10]. Кажущееся противоречие, по-видимому, объясняется повышением количества и качества металлических контактов в композиции под влиянием образующейся при спекании жидкой фазы сульфидной эвтектики, активизирующей процесс спекания железного порошка.  [c.112]


При литье по выплавляемым моделям, когда процесс кристаллизации замедлен из-за повышенной температуры формы (100—300 °С), получаются отливки с крупнокристаллической структурой и относительно низкими механическими свойствами. В таких случаях рекомендуется модифицирование расплава введением в него небольшого количества натрия. Для этого используют хлористые и фтористые соли натрия. Сначала расплав рафинируют, а затем модифицируют. Опыт показал, что во время модифицирования двойным (34 % Na l + 66 % NaF) или тройным (62,5 % Na l + 25 % NaF + + 12,5 % K l) модификатором расплав вновь насыщается газами и неметаллическими включениями. Во избежание этого, а также для ускорения и удешевления процесса плавки применяют так называемый универсальный флюс, который одновременно рафинирует и модифицирует расплав. Универсальный флюс растворяет, переводит в прозрачный расплав 1,2—1,6 % (по массе) AlgOg, адсорбирует 6—12 %. A.l,j03 и дегазирует расплав активнее хлористого цинка. Так как заливку разных отливок производят при различных температурах, применяют три состава универсального флюса, приведенные в табл. 7.8.  [c.268]

Главное преимущество постоянных форм состоит в том, что они позволяют в широких пределах изменять скорость охлаждения отливок, а овладеть проблемой управления процессом охлаждения отливок—это равносильно полному освоВождению производственников от капризов шихтовки, от случайностей снабжения исходными материалами в деле получения желаемой структуры отливок, а следовательно и в деле получения необходимых механич. свойств отливки. Наиболее распространенными материалами для постоянных форм служат металлы 1) чугун для отливок с невысокой <° л. (сплавы свинца, олова и цинка), 2) обыкновенные и легированные стали и специальные сплавы (нихром, бекет-металл и др.) для более тугоплавких металлов (медь, чугун и сталь). Широкое применение постоянные формы нашли в производстве отливок под давлением (чугунные, стальные и из специальных сплавов), в центробежном литье (чугун хромомолибденовый, сталь и пр.). Применение постоянных форм оправдывается в любом случае, когда число отливок, получаемых с одной формы, достаточно велико для того, чтобы окупить повышенную стоимость металлич. формы по сравнению со стоимостью обыкновенной песочной формы.  [c.45]


Смотреть страницы где упоминается термин Структура литого цинка : [c.242]    [c.107]    [c.548]    [c.579]    [c.108]    [c.217]    [c.489]    [c.24]    [c.333]    [c.107]    [c.542]    [c.634]    [c.418]   
Пластичность и разрушение твердых тел Том1 (1954) -- [ c.582 ]



ПОИСК



504—505 ( ЭЛЛ) литые

X оно литы

Литий

Литий, структура

Структура литая

Цинк литой

Цинк литой, структура

Цинк литой, структура

Цинка

Цинкит



© 2025 Mash-xxl.info Реклама на сайте