Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частота колебаний волны

При естественной радиоактивности элементов происходит испускание а- и /3-частиц, сопровождающееся выделением у-лучей а-частицы - это ядра атома гелия /3-частицы - это электроны, из которых состоят электронные оболочки атомов у-лучи - это распространяющиеся в пространстве электромагнитные колебания и отличающиеся от видимого света и рентгеновских лучей лишь значительно меньшей длиной волны и частотой колебания волн. На рис. 184 представлена шкала электромагнитных волн. Она представляет собой непрерывно заполненную градацию от бесконечно длинных электромагнитных волн, соответствующих электрическому обычному току, до волн, длина которых измеряется тысячными долями  [c.378]


Здесь со — частота колебаний волны, k — волновой вектор, равный 2я/Л, Л — длина волны. Очевидно, что + р)ка — разность фаз в точках волны, отстоящих одна от другой на р атомов.  [c.210]

Можно отметить, что с удалением фигуры от начала координат частота колебаний волны растет пропорционально расстоянию  [c.84]

Частота колебаний волны 298 Число Рейнольдса 131, 341  [c.356]

По отношению ко времени t функции 5, т) должны иметь данный период т, определяемый частотой колебания волны а  [c.665]

Тепловое излучение как процесс распространения электромагнитных волн характеризуется длиной волны X и частотой колебаний v = /X, где с — скорость света (в вакууме с = 3-10 м/с).  [c.90]

В соответствии с квантовой теорией носителями энергии излучения являются фотоны, представляющие собой поток частиц, взаимодействующий с веществом. Фотон характеризуется прежде всего величиной своей энергии, равной произведению hv, где /1=6,625-КФ Дж- с — постоянная Планка, а -V — частота колебаний эквивалентного электромагнитного поля, с Ч Длина волны X (м) связана с V через соотнощение  [c.12]

Таким образом, частота колебаний к точки М связана с длиной волны на экране соотношением  [c.311]

Пусть имеем два когерентных источника Si и Sj (рис. 4.2), колеблющихся с одинаковой частотой. Когерентные волны, исходящие из этих источников, встретятся в некоторой точке экрана А, отстоящей от соответствующих источников на расстояниях di и d. . Рассматриваемые в точке А колебания описываются уравнениями  [c.71]

Это означает, что С и Q для сплошного стержня инвариантны к частоте колебаний. Борн и Карман (1912 г.) решили задачу об упругих колебаниях кристалла с учетом периодической дискретной структуры кристалла. Существенное отличие спектра колебаний по Борну и Карману от спектра Дебая заключается в дисперсии скорости распространения упругих волн в дискретной среде.  [c.199]

При возникновении волн их частота определяется частотой колебаний источника волн, а скорость зависит от свойств среды. Поэтому волны одной и той же частоты имеют различную длину в разных средах.  [c.222]

Акустический резонанс. Звуковые волны, встречаясь с любым телом, вызывают вынужденные колебания. Если частота собственных свободных колебаний тела совпадает с частотой звуковой волны, то условия для передачи энергии от звуковой волны телу оказываются наилучшими — тело является акустическим резонатором. Амплитуда вынужденных колебаний при этом достигает максимального значения — наблюдается акустический резонанс.  [c.224]


Для настройки приемника на заданную волну частота собственных колебаний в контуре должна быть равной частоте колебаний в принимаемой волне. Частота собственных колебаний в контуре определяется из формулы Томсона  [c.290]

Ультракороткие волны (УКВ) представляют чрезвычайный интерес для решения многих важнейших технических задач. Это связано с тем, что для передачи энергии и получения направленного излучения выгодно увеличивать частоту колебаний (см. 1.5). Революция в технике УКВ" произошла в 1930 — 1940 гг., и теперь устройства, на которых были проведены знаменитые опыты Герца, Попова и др., представляют лишь исторический интерес. Основной недостаток передатчика Герца — это затухание колебаний и большая ширина спектра излучаемых частот. В современных генераторах УКВ (клистронах и магнетронах) взаимодействие электронного пучка и волн, возникающих в резонаторе, происходит по-иному, что позволяет поднять верхнюю границу частот (v 30 ГГц) и резко увеличить мощность сигнала, достигающего иногда десятков миллионов ватт в им пульсе. Положительными свойствами подобных излучателей являются высокая монохроматичность электромагнитной волны (излучается строго определенная частота) и крутой фронт временных характеристик сигнала. В качестве приемника УКВ-излучения обычно используют вибратор или объемный резонатор с кристаллическим детектором, имеющим резко нелинейные свойства, с последующим усилением низкочастотного сигнала.  [c.10]

Очевидно, что два гармонических колебания одной частоты всегда когерентны. Гармонические колебания порождают монохроматические волны., способные интерферировать. Равенство частот интерферирующих волн ( i = Ы2) и неперпендикулярность векторов El и Е2 служат дополнительными требованиями, превращающими необходимое условие (5. 5) в достаточное. Правда, следует учитывать, что при oj (02 (точнее, при oi — Ш2 = 5<а, где Soi Ш1, и лю Юг) все же может наблюдаться нестационарная интерференционная картина (биения). Вопрос об интерференции неполяризованных колебаний подробно исследован в 5.4.  [c.178]

Рассмотрим более подробно два предельных случая. Предположим сначала, что частота колебаний тела настолько велика, что длина излучаемой волны очень мала по сравнению с размерами I тела  [c.394]

Решение. В неограниченной среде радиальные колебания полости сопровождаются излучением продольных звуковых волн, что приводит к потере энергии и тем самым к затуханию колебаний. При с > с/ (т. е. > ц) это излучение будет слабым и можно говорить о собственных частотах колебаний с малым коэффициентом затухания.  [c.130]

Можно детально рассмотреть воздействие световой волны на электрические заряды атомов среды (электроны, ионы) электромагнитные волны возбуждают колебания зарядов, происходящие с частотой колебаний электрического вектора вследствие этих колебаний атомы среды излучают вторичные электромагнитные волны, интерференция всех вторичных волн с волной, падающей на среду, приводит к возникновению отраженной и преломленной волн.  [c.470]

Согласно (135.3), частоты всех трех волн должны быть равны между собой. В рамках молекулярных представлений, изложенных в начале параграфа, этот результат очевиден, так как частоты колебаний зарядов, вынуждаемых электрическим вектором световой волны, совпадают с частотой вынуждающей силы, т. е. со,. В дальнейшем индексы при со,, со,-, со будут опущены и частота будет обозначаться просто через со.  [c.472]

Теоретический смысл этих явлений легко понять. Под действием магнитного поля меняются собственные периоды колебания атомов и, следовательно, положение линий поглощения. Наблюдения в продольном направлении показывают, что собственные частоты, соответствующие правому и левому вращению, смещаются в разные стороны. Этим обстоятельством устанавливается связь между явлением Зеемана и явлением Фарадея. Так как показатель преломления зависит от близости частоты исследуемой волны к собственным частотам вещества (кривая дисперсии), то, следовательно, под действием магнитного поля изменяется и показатель преломления, причем различно для волн данной частоты, поляризованных по правому и левому кругу.  [c.629]


Таким образом, для одного п того же волнового вектора к, параллельного направлению [100], возникают три упругие волны — одна продольная и две поперечные. При этом две независимые волны сдвига имеют одинаковые скорости. В случае произвольного направления вектора к имеют место три поляризованные волны, распространяюш иеся с разными скоростями, которые не зависят от частоты колебаний. Как видно из выражений для скоростей (5.14), (5.16), (5.18), чем меньше плотность и чем больше жесткость кристалла, тем выше скорости распространения упругих (звуковых) волн. Из этих же выражений следует, что круговая частота колебаний со пропорциональна волновому числу k, т. е. дисперсионное соотношение получилось таким же, как и для случая упругой струны.  [c.145]

Если N/V— 10 см , то d=2 10 см", что по порядку величины совпадает с размерами зоны Бриллюэна, а минимальная длина волны Хо = 2л/Ав=3-10- см имеет порядок постоянной кристаллической решетки а. В решетке не могут распространяться волны с Я< 2а, и максимальная, или дебаевская, частота колебаний, по которой берется интеграл в (6.16), в этой модели  [c.172]

Выше уже отмечалось, что если собственная частота колебания сооружения значительно больше частоты колебания волны жидкости первой формы резервуара, то величина гидродинамического давления жидкости за счет колебания сооружения увеличивается незначительно по сравнению с таким же резервуаром, стоящим на земле. Следовательно, для высши.х форм  [c.305]

Относительно определения коэффициента сдвига путем приравнивания фазовых скоростей [2.150] можно сказать следующее. Точная теория дает бесконечное число мод, в то время как любая приближенная теория описывает конечное Ч1ИСЛ0 низших мод. С увеличением частоты колебаний волны  [c.148]

Здe ь сОо = 2л/о - так называемая круговая (циклическая) частота колебаний (волны), названная так в отличие от обычной частоты /о колебаний, равной числу полных циклов колебаний за одну секунду ф - константа, называемая начальной фазой колебаний. Значение аргумента (0ot + ф носит название фазы колебаний. Таким образом, плоскость х = с1 является поверхностью с неизменной фазой колебаний (поверхностью равной фазы) и распространяется со скоростью с. При распространении волны полный цикл изменения состояния среды имеет протяженность, называемую длиной волны. Полный цикл изменения состояния среды в точке носит название периода колебаний. Обозначив длину волны через X, а период через Г, имеем очевидные соотношения  [c.34]

Средняя т сометрическая частота делит диапазон частот любой волны мозга на высокочастотную и низкочастотную области. Отношение этих областей - постоянная величина для данной длины волны. Для (3-ритма, ответственного за умственную деятельность человека, эта величина близка к золотой пропорции. При изучении ритмов мозга Я.А. и А.А. Соколовы (см. ссылку [5]) пришли к формуле, которая описывает электрические колебания мозга  [c.168]

Волны - одно из наиболее фундаментальных и значимых понятий окружающего нас физического мира. Одна из основных характеристик волны - частота V. Волны бывают продольные, когда колебания происходит вдоль линии распространения волны, и поперечные, когда колебания происходят поперек этой ]гинии (рисунок 4.8). Продольные волны могут распространяться исключительно в срсде, тогда как поперечные - и в вакууме. Звук - продольные колебания упругой среды. Наше ухо способгю слышать колебания с частотой 50-12000 Гц. Свет - поперечные электромагнитные колебания. Наши органы зрения способны воспринимать электромагнитные колебания с частотой 10 -10 Г ц. Для сравнения, частота переменно1 о тока в электросети составляет 50 Гц.  [c.248]

Волны - одно из наиболее фундаментальных и значимых понятий окружающего нас физического мира. Одна из основных характеристик волны -частота V. Волны бывают продольные, когда колебания происходят вдоль линии распространения волны, и поперечные, когда колебания происходят поперек этой линии (рис. 82). Продольные волны могут распространяться исключительно в среде, тогда как поперечные - и в вакууме. Звук - продольные колебанияупругой среды.  [c.137]

Не менее часто нам приходится сталкиваться с преобразованием волн одной частоты в волны другой частоты. В приборах ночного видения излучение инфракрасной области спектра (v=10 Гц) преобразуется в излучение видимой области (Ю - 10Гц). Для передачи радиосигнала испо 1ьзуется амплитудно-частотная модуляция, то есть колебания с частотой, которую способно воспринимать человеческое ухо (50-12000 Гц), передаются при  [c.337]

Вещественная часть (о дает собственную частоту колебаний, а мнимая — коэффициент затухания в несжимаемой среде (с/ - оо) затухание, естественно, отсутствовало бы. Эти колебания — специфический результат сопротивляемос1и среды по отношению к сдвигу ( х 0). Обратим внимание на то, что для них kR = 2с(/с( <1, т. е. соответствующая этим колебаниям длина волны велика по сравнению с R (интересно сравнить это с колебаниями упругой сферы, для которых при С j первая собственная частота определяется согласно (3) из kR = л).  [c.130]

Пропуская пучок белого света через сосуд с жидкостью, в которой возбуждена ультраакустнческая волна (рис. 10.4), мы получим на экране спектр с дисперсией, соответствующей периоду дифракционной решетки, вычисленному по частоте колебаний кварца II скорости ультразвуковой волны в жидкости (рис. 10.5).  [c.233]

Для большинства жидкостей скорость ультразвуковых волн, не отличающаяся от скорости обычных звуковых волн, составляет около 1000—1500 м/с. Для прозрачных твердых тел (стекло, кварц) скорости составляют 5000— 6000 м/с. Поэтому во всех этих веществах можно удобно осуществлять опыты по лифракции на ультраакустических волнах с частотами колебаний до 10 Гц  [c.233]


В настоящем разделе мы рассмотрим задачу более формально, исследуя зависимость диэлектрической проницаемости среды от частоты световых волн, вызывающих смещение электрических зарядов вещества. Как показывает явление Зеемана (см. гл. XXXI), главную роль в оптической жизни атома играет электрон поэтому в дальнейшем мы для удобства будем говорить именно об электроне однако все наши рассуждения остаются в силе и для иных заряженных частиц, входящих в состав атома. В частности, при исследовании показателя преломления в области длинных волн необходимо учитывать влияние ионов, способных к сравнительно медленным (инфракрасным) колебаниям.  [c.549]

Задача сводится, таким образом, к определению емещения электрона г под действием внешнего, периодически меняющегося поля при учете сил, действующих на электрон, входящий в состав атома, со стороны частей этого атома и окружающих атомов, т. е. представляет собой задачу о вынужденных колебаниях электронов. При этом следует иметь в виду, что речь идет об электронах, частоты движения которых в атоме имеют тот же порядок величины, что и частота световой волны. Только такие электроны, как будет показано ниже, испытывают достаточно большое смещение и поэтому участвуют в рассматриваемых здесь процессах. Мы будем их называть оптическими электронами.  [c.550]

Электрическое поле волны приводит электрон в колебание с частотой самой волны. Колеблющийся электрон представляет собой диполь с, переменным электрическим моментом и создает, в свою очередь, Рис. 1.39. Диаграмма направлен- переменное электромагнитное поле, ности рассеянного рентгеновского Интенсивность этого поля и есть излучения. Картина имеет- симметрию тела вращения вокруг на- интенсивность излучения, рассеян-правления падающего луча (вол- НОГО ЭЛектрОНОМ. Из электродина-на не поляризована) мики известно, ЧТО для рентгенов-  [c.42]

Из (5.6) следует, что для упругой волны, распространяющейся в неограниченно протяженной струне, частота колебаний линейно зависит от волнового числа (рис. 5.2). При этом Рис. 5.2. Дисиерсп- скорость распространения волны длГ данного материала—величина постоянная,  [c.142]

Таким образом, отличие дискретной цепочки от непрерывной струны заключается в отсутствии пропорциональности между частотой (О и волновым числом к. Это связано с дисперсией волн. Короткие волны, которым соответствует более высокая частота колебаний частиц, вследствие инерции масс частиц распространяются медленнее, чем длинные волны. Наличие дисперсии волн проявляется в отклонении кривой ш = со( ) от линейной зависимости (см. рис. 5.5), справедливой для упругой струны. Цепочка из одинаковых атомо в ведет себя в отношении распространения  [c.147]

Три нижние ветви (рис. 5.15), которые при малых k стремятся линейно к нулю, называют акустическими, а остальные Зг—3) являются оптическими, среди них также различают ветви продольных и поперечных колебаний. Скорость распространения продольных волн больше скорости распространения поперечных волн, так как частоты колебаний продольных волн больше частот колебаний поперечных волн (сйх.>шт2>сйтч) -  [c.160]


Смотреть страницы где упоминается термин Частота колебаний волны : [c.517]    [c.158]    [c.222]    [c.252]    [c.254]    [c.265]    [c.136]    [c.429]    [c.548]    [c.142]    [c.756]    [c.775]   
Гидравлика Основы механики жидкости (1980) -- [ c.298 ]



ПОИСК



Волновое движение в бесконечной мембране. Деформация волн Простые гармонические волны. Бесселевы функции. Допустимые частоты. Фундаментальные функции. Соотношение между параллельными и круговыми волнами. Барабан. Допустимые частоты Вынужденные колебания, конденсаторный микрофон

Волновой пакет, образованный двумя волнами. Групповая скорость Суперпозиция колебаний с эквидистантными частотами. Квазиплоская волна Хаотический свет

Волны частота

Колебания и волны

Частота колебаний

Частота колебаний (частота)



© 2025 Mash-xxl.info Реклама на сайте