Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приводные Конструкция

Тележки самоходные приводные. Конструкция самоходных тележек определяется условиями их применения, грузоподъемностью, характеристикой привода, характером транспортируемого груза и другими условиями.  [c.286]

Кроме того, требуется разработать конструкцию дожимающего компрессора с приводной паровой турбиной конденсационного типа на средние параметры пара. Однако можно исключить дожимающий компрессор. Для этого на выходе из компрессора ГТ-125 устанавливаются дополнительно две ступени, позволяющие увеличить степень сжатия компрессора. Предварительные расчеты показывают, что в этом случае потребуется увеличение длины корпуса и ротора на 0,5 м.  [c.23]


Правила выполнения рабочих чертежей звездочек приводных роликовых и втулочных цепей Правила выполнения чертежей зубчатых (шлицевых) соединений Правила выполнения чертежей металлических конструкций  [c.354]

Способ соединения опорного фланца с корпусом (рис. 17.33,0, б) зависит от соотношений размеров фланцев электродвигателя и корпуса. Иногда для упрощения конструкции корпусной детали электродвигатель крепят не непосредственно к корпусу, а к крышке подшипника, которую конструируют, как показано на рис. 17.33, в. Обычно вал электродвигателя соединяют с валом узла компенсирующей муфтой. В этом случае центрирующий буртик фланца электродвигателя сопрягают с центрирующим отверстием опорного фланца по посадке /77//6. Соединение валов глухими муфтами (втулочной и др.) нежелательно, так как приводной вал и вал электродвигателя образуют в этом случае один многоопорный вал (статически неопределимая система). Для нормальной работы такого соединения требуется строжайшая соосность валов, которая достигается ручной пригонкой опорного фланца корпуса и точным совмещением осей при сборке.  [c.256]

Качество конструкции металлорежущих станков оценивают отношением массы станка к номинальной мощности приводного двигателя (показатель невыразительный, потому что он не учитывает степени использования номинальной мощности, а также производительности станка).  [c.101]

В составной конструкции кулачковой шайбы (рис. 88, г) корпус выполнен из алюминиевого сплава, к нему присоединен на заклепках венец кулачков и приводной шестерни внутреннего зацепления, выполненный из закаленной стали.  [c.186]

Конструкция клапанной тарелки, ввернутой на резьбе в шток клапана (рис. 356, а) неработоспособна. Под действием сил и изгибающих моментов при набегании приводного кулачка на тарелку резьбовое соединение расшатывается. Кроме того, свободная резьба не обеспечивает точной фиксации тарелки относительно штока. Удлинение резьбового пояса (рис. 356, б) лишь отчасти, устраняет эти недостатки. Целесообразнее затягивать резьбовое соединение контргайкой (рис. 356, в). Аналогичный пример приведен на рис. 356, гид (тендер).  [c.507]

В оригинальном решении (рис. 394) резко упрощающем конструкцию, колесо 1 приводного вала сцепляется с одной стороны с правой шестер-  [c.545]

Конструкция в редуктора с цилиндрическими шестернями 3, 4, опертыми в разных корпусах, нецелесообразна. В агрегатированной конструкции г шестерни установлены в одном корпусе 5 малая шестерня редуктора соединена с приводным валом посредством торсиона 6, компенсирующего неточности расположения редуктора относительно вала.  [c.548]


В приводе подвесного конвейера (рис. 400, п), состоящего из редуктора 1, конической передачи 2 и цилиндрических зубчатых колес 3, передающих вращение приводной звездочке 4 цепной передачи, силовая схема нерациональна. Опорные узлы передачи, крепежные болты и фундаменты нагружены усилиями привода значительная часть элементов конструкции работает на изгиб. Узлы привода разобщены, установлены на разных основаниях и не зафиксированы один относительно другого. Для того чтобы добиться удовлетворительной работы механизмов, нужна ропотливая регулировка взаимного расположения механизмов.  [c.551]

Кулачково-дисковая муфта состоит из ведущего / и ведомого т дисков, соединенных плавающей шайбой п. В конструкции 9 радиальные выступы промежуточной шайбы расположены попарно в пазах между ведущими кулачками (на рисунке зачернены) и в пазах ведомого диска. Приводные силы и реактивные силы на ведомом диске (светлые стрелки) изгибают выступы шайбы.  [c.559]

Конструкция 1 (рис. 406) привода роликового толкателя ошибочна. Направляющая втулка толкателя, выполненная в виде консоли, подвергается сильному изгибу действием приводного кулачка. Крепление конца втулки в станине (конструкция 2) устраняет изгиб.  [c.559]

На рис. 413 приведены примеры сокращения осевых размеров зубчатой передачи. В исходной конструкции а конечное колесо 1 установлено консольно в диафрагме 2. Приводное колесо 3 оперто на двух подшипниках, один из которых установлен в крышке 4, а другой — в выточке тела конечного колеса, консольно по отношению к основным подшипникам. Вал промежуточных зубчатых колес оперт с одной стороны к диафрагме 2, с другой — в крышке 4.  [c.570]

В конструкции в вся передача смонтирована на одной детали — диафрагме 5. Крышка 9 является ненесущей и сопряжена с механизмом редуктора только уплотнением, охватывающим носок приводного вала. Изготовление и сборка передачи здесь упрощаются еще больше.  [c.571]

Если на ведущее звено действует не уравновешивающая пара сил Мур, а уравновешивающая сила Рур, что зависит от конструкции устройства, соединяющего ведущее звено с валом двигателя, то линия действия этой силы, тоже определяемая конструкцией приводного устройства, заранее известна (рис. 67, в), и остается найти только величину Рур. Обозначая через Н плечо силы Рур относительно центра О, имеем  [c.92]

Храповые механизмы преобразуют качательное движение входного звена в прерывистое вращательное или поступательное движение выходного звена. Храповые. механизмы применяют в шаговых искателях, реле времени и т. д. По принципу работы храповые механизмы можно разделить на зубчатые и фрикционные. Схема зубчатого храпового механизма показана на рис. 24.13, щ а его конструкция — на рис. 24.13,6. Механизм состоит из храпового колеса 4 и собачки 3, шарнирно связанной с выходным звеном 2 приводного механизма, которое является входным звеном храпового механизма. При непрерывном вращении кривошипа 1 поворот храпового колеса производится при прямом ходе коромысла 2. При обратном ходе коромысла 2 стопорная собачка 5, прижимаемая к колесу пружиной, препятствует обратному движению колеса 4.  [c.283]

Основой схем манипуляторов являются кинематические цепи, не образующие структурные замкнутые контуры, звенья которых соединены кинематическими парами 3, 4, 5-го классов. Положение каждого звена таких кинематических цепей изменяется обычно отдельным приводом. Если привод смонтирован на звеньях, составляющих кинематическую пару, то такая кинематическая пара называется приводной. Наибольшее распространение получили манипуляторы с поступательными и вращательными приводными кинематическими парами 5-го класса, однако известны конструкции с приводными парами цилиндрической 4-го и сферической 3-го классов. Число степеней свободы манипулятора с кинематическими парами 5-го класса соответствует числу приводных кинематических пар.  [c.221]

К достоинствам ременных передач относятся 1) эластичность передачи, отсутствие ударов и толчков 2) возможность передачи мощности на большие расстояния (до 15 м) 3) простая конструкция и невысокая стоимость изготовления 4) бесшумность 5) предохранение приводной установки от вредного влияния перегрузок (при перегрузке ремень начинает буксовать и передача останавливается).  [c.348]


Сушествует целый ряд конструкций муфт, которые наряду с компенсирующими свойствами обеспечивают смягчение возникающих в приводной установке ударов и толчков. Такие муфты называют упругими. К этой категории относится, в-частности, муфта со змеевидными пружинами (рис. 387). Полумуфты имеют зубья специального профиля, между которыми  [c.390]

Достоинства ременных передач простота конструкции и эксплуатации плавность и бесшумность работы, обусловленные значительной податливостью приводного ремня возможность передачи вращения валам, удаленным на большие расстояния (до 15 м и более) невысокая стоимость. Недостатки малая долговечность приводных ремней сравнительно большие габариты высокие нагрузки на валы и их опоры непостоянство передаточного числа большинства ременных передач.  [c.75]

Резинотканевые плоские приводные ремни (ГОСТ 23831—79 ) имеют наибольшее распространение. Они состоят из тканевого каркаса нарезной конструкции с резиновыми прослойками между прокладками. Каркас ремней изготовляют из технических тканей с хлопчатобумажными, комбинированными или синтетическими нитями (по согласованию с потребителем ремни на основе первых двух тканей допускается изготовлять без резиновых прослоек). Наиболее прочны ремни с каркасом из синтетических тканей. Основная нагрузка воспринимается тканью, а резина обеспечивает работу ремня как единого целого, защищает ткань от повреждений и повышает коэффициент трения ремня о шкив.  [c.86]

Существуют объемные гидравлические передачи (рис. IV.2, б), у которых полости насоса и гидромотора непосредственно соединены трубопроводами без золотникового распределителя. Насос Н трубопроводами 1 ж 2 соединен с гидромотором ГМ. В такой гидросистеме направление вращения гидромотора ГМ зависит от того, какой трубопровод из двух напорный. Последнее зависит от направления вращения приводного насоса-двигателя, а в некоторых конструкциях насосов, о чем будет указано ниже,— от взаимного положения одних деталей насоса относительно других. В том случае, когда напорным является трубопровод 1, вращение гидромотора происходит в направлении часовой стрелки. Трубопровод 2 при этом сливной и рабочая жидкость, совершив работу в гидромоторе, по трубопроводу 2 поступает непосредственно во всас насоса, не сливаясь в резервуар. Если напорным будет трубопровод 2, то сливным становится трубопровод 1.  [c.31]

Правила выполнения чертежей пружин (401) Условные изображения зубчатых колес, реек, червяков и звездочек цепных передач (402) Правила выполнения чертежей цилиндрических зубчатых колес (403), — зубчатых реек (404) — конических зубчатых колес (405) — цилиндрических червяков и червячных колес (406) — червяков и колес червячных глобоидных передач (407) — звездочек приводных роликовых и втулочных цепей (408) — зубчатых (шлицевых) соединений (409) — металлических конструкций (410) — труб и трубопроводов (411) — чертежей и схем оптических изделий (412) — электромонтажных чертежей электротехнических и радиотехнических изделий (413) — чертежей жгутов, кабелей и проводов (414) — изделий с электрическими обмотками (415) Условные изображения сердечников магнитопроводов (416) Правила выполнения документации при плазовом методе производства (419) Упрощенные изображения подшипников качения на сборочных чертежах (420) Правила выполнения чертежей печатных плат (417) — чертежей тары Правила выполнения звездочек для грузовых пластинчатых цепей (421), — чертежей цилиндрических зубчатых колес передач Новикова с двумя линиями зацепления (422).  [c.363]

Правила выполнения чертежей пружин (401 ) Условные изображения зубчатых колес, реек, червяков и звездочек цепных передач (402 ) Правила выполнения чертежей цилиндрических зубчатых колес (403 ), зубчатых реек (404 ), конических зубчатых колес (405 ), цилиндрических червяков и червячных колес (406 ), червяков и колес червячных глобоид-ных передач (407), звездочек приводных роликовых и втулочных цепей (408), зубчатых (шлицевых) соединений (409 ), металлических конструкций (410 ) труб и трубопроводов и трубопроводных систем (411), чертежей и схем оптических изделий (412 ). Правила выполнения конструкторской документации изделий, изготовляемых с применением электрического монтажа (413 ) Правила вьшолнения чертежей жгутов, кабелей и проводов (414 ), изделий с электрическими обмотками (415 ) Условные изображения сердечников магни-топроводов (416) Правила выполнения чертежей печатных плат (417 ) Правила выполнения конструкторской документации упаковки (418 ) Правила выполнения документации при плазовом методе производства (419 ) Упрошенные изображения пошшшников качения на сборочных чертежах (420 ) Правила выполнения рабочих чертежей звездочек для пластинчатых цепей (421), цилиндрических зубчатых передач Новикова с двумя линиями зацепления (422), чертежей элементов. гштейной формы и отливки (423 ), чертежей штампов (424), рабочих чертежей звездочек для зубчатых цепей (425), звездочек для разборных цепей (426), звездочек для круглозвенных цепей (427) Правила вьшолнения чертежей поковок (429 ).  [c.313]

Величина перегрузки зависит от конструкции передачи (привода). Так, при наличии предохранительной муфты величину перегрузки определяет момент, при котором эта муфта срабатьшает. При отсутствии предохранительной муфты возможную перегрузку условно принимают равной перегрузке при пуске приводного электродвигателя.  [c.165]

Возможный по условиям конструкции диапазон регулирования зависит от ширины ремня. Стандартные приводные клиновые ремни п ГОСТ 1284.1—80 позволяют получать D до 1,5, а специальные широкие — до 5. Клиноремепные вариаторы являются простыми и достаточно надежными.  [c.213]


Звездочки приводных цепей. По конструкции они во многом подобны зубчатым колесам (см. рис. 13.1). Делнтелг.ная окружность звездочки проходит через центры шарниров цеть Диал1етр этой окружности определяется равепство.м (рис. 13.6)  [c.246]

Тематика курсового проектирования обычно ограничивается различными тииами механических приводов. В задание по возможности включаются объекты, изучаемые в курсе деталей машин передачи, муфты, подшипники, соединения и др. Наиболее подходя-Ш.ИМИ являются приводные устройства станков, транспортных, транспортирующих, строительно-дорожных и других машин. Простая конструкция привода позволяет тщате.1ьно прорабатывать его элементы.  [c.5]

Передачу крутящего момента от вала электродвигателя к приводному фланцу осуществляем с помощью венца эвольвентных шлицев, нарезанных на периферии фланца. На приводном валу электродвигателя устанавливаем аналогичный фланец фланцы соединяем шлицевой втулкой 1, установленной с зазором на шлицах обоих фланцев и зафиксированной в осевом направлении разрезным кольцом. Эта конструкция способна передавать большой крутящий момент при малых осевых размерах И обеспечивает компенсацию несоосностн установки электродвигателя и насоса. В ступице крыльчатки предусматриваем резьбу 4 под съемник. Между ступицей крыльчатки и распорной втулкой устанавливаем шайбу 2 для регулирования осевого положения крыльчатки в Корпусе.  [c.93]

В конструкциях 4 и б рабочая поверхность-штока стеллйтирована, Пример увеличения упругости системы толкателя приведен щ рис. 231, а. При превышении силы предварительной затяжки пружина 7 сжимается, смягчая удар. Систему применяют в тех случаях, когда при повышенных значениях приводной силы допустимо некоторое отклонение закона движения конечного звена механизма от расчетного, задаваемого профилем приводного кулачка. Целесообразно уменьшать зазор в соаде нении. Введение регулирования позволяет установить минимальный зазор, совместимый с условием правильной работы механизма, а таете ком пенсировать его увеличение в результате износа. Однако регулирование усложняет эксплуатацию, так как требует периодического контроля состояния механизма. 1  [c.357]

Нередко унификация достигается лишь в результате целенаправленной проработки, требующей оригинальных решений. В редукторе с двумя концентричными валами, вращающимися с одинаковым числом оборотов в противоположные стороны (рис. 393), на приводном валу посажены два зубчатых колеса, одно из которых 1 сцепляется с колесом 2 редуктора, второе 3 — через промежуточное колесо 4 с колесом 5. Узел имеет колеса четырех наименований (1—4 , 2, 3, 5). Много детальность и сложнбеть конструкции вызваны необходимостью предупредить задевание зубьет колес 3 за зубья колеса 5. Для этого потребовалось уменьшить диаь егр колеса 3 и соответственно (для сохранения передаточного числа) уменьшить диаметр колеса 5.  [c.545]

В агрегатированной конструкции б вал червячного колеса установлен в двух опорах, из которых одна расположена в корпусе, другая — в диафрагме 1. Обе опоры можно обработать в сборе, получив необходимую соосность. Вал червячного колеса соединен с приводным валом п]лицевы.м переходником 2. Монтаж редуктора значительно упрощается.  [c.548]

В агрегатированных конструкциях мотор-редуктора привод осуществляется от фланцевого электродвигателя через червячный (б) или планетарный (в) редуктор. Угловая передача устранена. Габариты установки резко сокращаются. Усилия привода погашаются в корпусе редуктора, который нагружен только окружным усилием на приводной звездочке. Введение централизованной жидкой смазки увеличивает долговечность передав. В целом получается громный выигрьпц в габаритах и массе установки, простоте изготовления, удобстве монтажа и обслуживания, коэффициенте полезного действия, затрате энергии, надежности II долговечности.  [c.552]

Для размещения конструктивных элементов следует использрвать свободные полости. В компенсирующей шлицевой муфте 7 с заданной длиной I промежуточной втулки можно сократить габариты путем частичного (конструкция 8) или полного (конструкция 9) ввода ступиц приводных дисков в полость втулки. При размерах, показанных на рисунке, длина соединений сокращается в отношении 1 Ьг Ьз = 1 0.8 0,6.  [c.567]

В конструкции б приводной валик с рукояткой установлен в отдельном корпусе и связан с пробкой шлицакш. Пробка разгружена от действия внешних сил и имеет возможность самоцентрироваться в гнезде.  [c.597]

В современном машиностроении применяются цепи различных конструкций с относительной подвижностью звеньев в одной плоскости или в пространстве (круглозвенные и карданные). По назначению все разновидности цепей могут быть подразделены на приводные, используемые в цепных передачах , тязобь/е, применяемые в цепных конвейерах, и грузовые, предназначенные для грузоподъемных машин и закрепления грузов.  [c.429]

Клиновые и поликлиновые ремни. Клиновые приводные ремни выполняют бесконечными резинотканевой конструкции трапецеидального сечения с углом клина фо = 40°. В зависимости от отношения ширины большего основания трапеции к ее высоте h клиновые ремни бывают нормальных сечений см. рис. 6.8) узкие (/>о/Л 1,2) широкие (bolhx2,5 и более применяют для клиноременных вариаторов).  [c.91]

Критерии выбора типа привода питательных насосов на АЭС те же, что на ТЭС. Трубопривод для АЭС имеет еще одно преимущество. В случае аварийного обесточив вания питания реактора продолжается почти до его полного расхолаживания за счет снабжения приводной турбины свежим паром. Все остальные насосы АЭС (технического водоснабжения, масляные, вакуумные, насосы химической доочистки и т. п.) не имеют принципиальных отличий от рассмотренных выше конструкций насосов, используемых на ТЭС.  [c.302]

Эксплуатация гидромуфт подобной конструкции подтвердила их работоспособность только на установках при весьма плавном изменении момента сопротивления на ведомом валу (изменение момента в 1,5—2 раза должно длиться несколько секунд). При этом моментная характеристика незначительно отличается от приведенной пунктиром на рис. 163, а. При резком увеличении момента жидкость не успевает протекать через отверстия 7 (см. рис. 162) и гидромуфта работает с недостаточно опорожненной рабочей полостью. Момент при этом резко возрастает и на характеристике возникает горб (участок аЬ рис. 163, а). Вследствие инерционности системы с увеличением скольжения самоопоражнивание может стать чрезмерным для данного момента сопротивления и на характеристике появится спад (участок Ьс). Такое течение момента может оказаться недопустимым для приводного двигателя. Поэтому гидромуфты этого типа не следует применять на установках с резким изменением момента сопротивления.  [c.249]


Смотреть страницы где упоминается термин Приводные Конструкция : [c.485]    [c.209]    [c.178]    [c.257]    [c.6]    [c.140]    [c.571]    [c.371]    [c.191]    [c.231]    [c.145]   
Справочник машиностроителя Том 3 (1951) -- [ c.713 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте