Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамика плазмы

Элементы термодинамики плазмы  [c.48]

Анализ проводимости вещества, а также элементарных процессов и термодинамики плазмы показал следующее.  [c.60]

Термодинамика плазмы, построенная на основе первого приближения бинарной функции распределения (15.63), совпадает с термодинамикой дебаевской теории.  [c.287]

По сравнению с 1-м изданием книга основательно переработана, сокращены некоторые параграфы и разделы, не имеющие отношения к авиационной и ракетной технике. Введены новые разделы Термодинамика плазмы и Термодинамика необратимых процессов .  [c.2]


Во втором издании учебника в первой части более подробно рассмотрены вопросы трактовки первого и второго законов термодинамики, реальных газов значительно переработаны разделы химической термодинамики, дифференциальных уравнений термодинамики, паровых и парогазовых циклов включены разделы, посвященные эксергетическому методу исследования, термодинамике плазмы, термодинамике необратимых процессов.  [c.3]

Открытие нового состояния вещества — плазмы, которая, вероятно, в ближайшем будущем будет широко применяться в некоторых областях техники благодаря ее замечательным свойствам, например электропроводности, настоятельно требует скорейшего и тщательного изучения ее теплофизических свойств должен развиваться новый раздел термодинамики с новыми методами исследования — термодинамика плазмы.  [c.9]

Современная термодинамика не является застывшей наукой. С одной стороны, ширятся объекты исследования, где могут быть применены термодинамические методы исследования области высоких и низких температур, области очень малых и больших давлений. С другой стороны, новые открытия рождают и новые области применения термодинамики термодинамика термоядерных реакций, термодинамика плазмы, релятивистская термодинамика, термодинамика отрицательных абсолютных температур и т. д. И, наконец, не остаются неизменными и сами методы термодинамического исследования эксергетический метод, методы термодинамики необратимых процессов и др.  [c.228]

ГЛАВА XXI ОСНОВЫ ТЕРМОДИНАМИКИ ПЛАЗМЫ И НЕОБРАТИМЫХ ПРОЦЕССОВ  [c.228]

Макс, давления, достигаемые в наст, время за сильными ударными волнами, составляют десятки млн. атмосфер. С ростом давления электронные оболочки атомов и ионов перестраиваются и поочередно разрушаются. Термодинамич. величины сверхплотной плазмы немонотонно зависят от 2 (см. Термодинамика плазмы).  [c.254]

РАВНОВЕСНАЯ ПЛАЗМА — плазма, находящаяся в состоянии равновесия термодинамического. На опыте реализуется локальное равновесие, когда состояние плазмы определяется локальным значением дав.чения и темп-ры. Подробнее см. в ст. Термодинамика плазмы.  [c.197]

Глава XXV. ТЕРМОДИНАМИКА ПЛАЗМЫ  [c.420]

Основное понятие термодинамики — понятие температуры, которая характеризует значение энергии и ее распределение между частицами вещества. В разреженной или в горячей плазме электронная Те й ионная Ti температуры не равны между собой (рис. 2.16), но с увеличением давления газа их значение и распределение по сечению столба дуги становятся почти одинаковыми (рис. 2.17). Ионная температура близка к температуре газа Ti T .  [c.49]


Применение законов термодинамики ограничено высокими плотностями, где энергия плазмы и ее давление определяются не электрическим взаимодействием, а явлением вырождения. При этом если энергия вырождения (энергия Ферми) велика по сравнению с тепловой и электростатической энергией, то энергия и давление плазмы будут определяться энергией и давлением вырожденного электронного газа. Энергия и давление вырожденного электронного газа находятся методами статистической физики.  [c.232]

Книга отличается от вышедших ранее тем, что 5 в ней рассмотрены основные положения об эксергии, термодинамике плазмы и др. Кроме того рассмотрен вопросы термодинамики непосредственного преобразования теплоты в электрическую энергию и излоч. , жены основы химической термодинамики.  [c.2]

В сварочных дугах имеются три характерные зоны — катодная, анодная и столб дуги. Столб сварочных дуг при атмосферном давлении представляет собой плазму с локальным термическим равновесием, квазинейтральностью и свойствами идеального газа. В столбе вакуумных сварочных дуг термическое равновесие может не наблюдаться, т. е. Te> Ti=Tn). С помощью физики элементарных процессов в плазме определяют потенциал ионизации газов Ui, эффективное сечение взаимодействия атомов с электронами (по Рамзауэру) Qe и отношение квантовых весов а . С использованием термодинамических соотнощений (первое начало термодинамики, уравнение Саха) определяют эффективный потенциал ионизации о, температуру плазмы столба Т, напряженность поля Е и плотность тока / в нем.  [c.60]

Работу ракетного двигателя можно представить в виде последовательности квазиравновесных процессов, таких как нагревание топлива, его горение, расширение продуктов сгорания до давления истечения из сопла. Особенность их состоит в зависимости химического состава продуктов сгорания от условий проведения процесса. Термодинамика позволяет рассчитать равновесный молекулярный состав газов на каждом из этапов работы двигателя, если известны необходимые свойства исходных веществ и продуктов сгорания. В итоге удается отделить термодинамические задачи от газодинамических и оценить удельную тягу двигателя при заданном топливе или, не прибегая к прямому эксперименту, подобрать горючее и окислитель, обеспечивающие необходимые характеристики двигателя. Другой пример — расчет электропроводности низкотемпературной газовой плазмы, являющейся рабочим телом в устройствах для магнитно-гидродинамического преобразования теплоты в работу. Электропроводность относится к числу важнейших характеристик плазмы она пропорциональна концентрации заряженных частиц, в основном электронов, и их подвижности. Концентрация частиц может сложным образом зависеть от ис- ходного элементного состава газа, температуры, давления и свойств компонентов, но для равновесной плазмы она строго рассчитывается методами термодинамики. Что касается подвижности частиц, то для ее нахождения надо использовать другие, нетермодипамические методы. Сочетание обоих подходов позволяет теоретически определить, какие легкоионизирующиеся вещества и в каких количествах следует добавить в плазму, чтобы обеспечить ее требуемую электропроводность.  [c.167]

В пособии, написанном в соответствии с программой по теоретической физике, утвержденной Минвузом СССР, приведен материал второй части курса термодинамики и статистической физики (Ч. I Термодинамика и статистическая физика. Теория равновесных систем — 1986 г.). Излагаются общий метод вывода кинетических уравнений по Боголюбову и получение этим методом газокинетического уравнения Больцмана и кинетического уравнения Власова для плазмы. Рассматриваются вопросы теории брауновского движения, случайных процессов и процессов переноса, а также новые вопросы, определяющие перспективы развития термодинамики и статистической физики самоорганизация сильно неравновесных систем, численные методы в статистической физике — метод Монте-Карло и метод молекулярной динамики.  [c.2]


Систематически излагается термодинамика и статистическая теория миогочастичных райиовесных систем. В основу статистической физики равновесных идеальных и неидеальных систем положены метод Гиббса и метод функций распределения Боголюбова. Излагается классическая и квантовая теория газа, твердого тела, равновесного излучения, статистическая теория плазмы и равновесных флуктуаций. Обсуждаются методологические вопросы курса, В книге рассматриваются также некоторые новые вопросы, еще не вошедшие в программу теория критических индексов, вариационный принцип Боголюбова, термодинамическая теория возмущений, интегральные уравнения для функций распределения (уравнение самосогласованного поля,, интегральное уравнение Боголюбова—Борна—Грина, уравнение Перкуса— Иевика).  [c.2]

По значению внутренней энергии, используя дифференциальные уравнения термодинамики, можно определить изохорно-изотерми-ческий потенциал, энтропию, теплоемкость и другие параметры плазмы.  [c.231]

Взаимодействие микровыступов при трении происходит в течение очень короткого времени (Ю -КН с), за которое к контакту подводит ся болыпое количество энергии. Для таких условий законы классической термодинамики не выполняются материал тонкого поверхностного слоя преобразуется, в результате в зоне соударения неровностей поверхностей образуется магма-плазма. Этот процесс сопровождается эмиссией электронов.  [c.86]

Предельные формулы термодинамики тля мы получзются из услО" вня заполнения электронами всех элементарных ячеек Объем плазмы в шестимерном фазовом пространстве равен 4 лр пИ/3 где V — объем —максимальный импульс Тогда число элементарных ячеек в этом объеме н полное число электронов равны соответственно  [c.391]

Однако нммотря на достаточно частое отсутствие температурного равновесия между электронами и ионами в плазме, очень большой круг практических задач можно рассматривать с позиций равновесной термодинамики Для многих прикладных задач часто используется так называемое локальное термодинамическое равновесие. Под таким равновесием понимается состояние, при котором внутри каждого малого объема плазмы имеет место полное термодинамическое рав 10Е1есне, но температура является медленно меняющейся функцией координат. При этом должны выполняться условия г % X, и Т  [c.394]

Техно л. схема плазмохим. процесса кроме операций, присущих любому хим. процессу (подготовки сырья, сохранения, выделения и очистки целевого продукта), содержит стадии генерации плазмы, плазмохим. превращений и закалки. В генераторе плазмы происходит преобразование теплоносителя или реагента в плазменное состояние. Обычно в качестве генератора плазмы используется плазмотрон, применяются также ударные трубы и мощные лазеры. В смесителе плазмохим. реактора образуется смесь плазмообразующего газа с остальными реагентами, обладающими задаваемыми параметрами, определяемыми термодинамикой и кинетикой процесса. При этом начинается хим. реакция, зависящая от организации смешения компонентов и продолжающаяся непосредственно в реакторе. Если необходимо, реакцию прекращают не непосредственно в реакторе. Прекращают реакцию на требуемой стадии резким снижением темп-ры в закалочном устройстве. Плазмохим. технологию применяют для органич. и неорганич. синтеза, для получения ультра дисперсных порошков, плёнок органич. и неорганич. материалов, для получения мембран разл. типов, травления, модификации поверхности разных материалов и изделий, обработки по-ли.меров, получения световодов и т. д. П. используется в физ. и хим. анализе.  [c.619]

Лит. Шафранов В. Д., Равновесие плазмы в магнитном поле, в сб. Вопросы теории плазмы, в. 2, М., 1963, с. 92 Арцимович Л. А,, Сагдеев Р. 3., Физика плазмы для физиков, М., 1979, гл. 2, 9 К а д о м ц е в Б. Б,, Коллективные явления в плазме, М., 1988, гл. 1, 3. В. Д. Шафранов. РАВНОВЕСИЕ СТАТИСТИЧЕСКОЕ — состояние замкнутой сгатистнч, системы, в к-ром ср. значения всех физ. величин и параметров, его характеризующих (напр., темп-ры и давления), не зависят от времени. Р. с.— одно из осн. понятий статистической физики, играющее такую же важную роль, как равновесие термодинамическое в термодинамике. Р. с. не является обычным равновесием в механич. смысле, т. к. в системе постоянно возникают малые флуктуации физ. величин около их ср. значений равновесие является подвижным, или динамическим. В статистич. физике Р. с, описывают с помощью разл. Гиббса распределений (микро-канонич., кавович. и большого канонич. распределения) в зависимости от типа контакта системы с окружающей средой (термостатом), запрещающего или разрешающего обмен с ней энергией или частицами. Статистич. физика позволяет описать также флуктуации в состоянии Р. с.  [c.195]

С. в. уносит с собой в межпланетную среду коро-нальное магн. поле. Вмороженные в плазму силовые линия этого поля образуют межпланетное магн. поле (ММП). Хотя напряжённость ММП невелика и плот ность его энергии составляет ок. 1% от плотности кине-тич. энергии С. в., оно играет большую роль в термодинамике С. в. и в динамике взаимодействий С, в. с телами Солнечной системы, а также Потоков С. в. между собой.  [c.588]

На рис. 3 представлена чакжс зависимость v(Z). полученная с помощью одного И" простейших вариантой метода функционала плотности (МФП) термодинамич. потенциала. Этот метод наиб, перспективен он позволяет описать термодинамику сжатой плазмы н н]ироком диапазоне параметров,  [c.91]

В соответствии с многообразием исследуемых форм движения материи Ф. подразделяется на ряд дисциплин, или разделов, в той или иной мере связанных друг с другом. Деление Ф. на отд. дисциплины не однозначно, его можно проводить, руководствуясь разл. критериями. По изучаемым объектам Ф. делится на Ф. элементарных частиц и физ, полей, Ф. ядра, Ф. атомов и молекул, Ф. твёрдых, жидких и газообразных тел, Ф. плазмы. Др. критерий — изучаемые процессы или формы движения материи, Различают механич. движение, тепловые процессы, эл.-магн. явления, гравитационные, сильные, слабые взаимодействия соответственно в Ф. выделяют механику материальных точек и твёрдых тел, механику сплошных сред (включая акустику), термодинамику, статистич. физику, электродинамику (включая оптику), теорию тяготения, квантовую механику и квантовую теорию поля. При этом мн. процессы изучаются на разных уровнях на макроско-пич. уровне в феноменологических (описательных) теориях и на микроскопич. уровне в статистич. теориях мн. частиц. Указанные способы подразделения Ф. частично перекрываются вследствие глубокой внутр. взаимосвязи между объектами материального мира и процессами, в к-рых они участвуют. По целям исследования выделяют также прикладную Ф. Особо выделяется теория колебаний и волн, что основано на общности закономерностей колебат. процессов разл. физ. природы и методов их исследования. Здесь рассматриваются механич., акустич., электрич. и оп-тич. колебания и волны с единой точки зрения.  [c.311]


В плазме осн. роль играют эл.-магн. взаимодействия заряж. частиц, и лишь статистич. теория, как правило, способна дать ответ на любые вопросы, связанные с поведением плазмы. В частности, она позволяет исследовать проблему устойчивости высокотемпературной плазмы во внеш. эл.-магн. поле. Эта задача чрезвычайно актуальна в связи с проблемой осуществления управляемых термоядерных реакций. Существенный вклад в феноменологич. теорию необратимых процессов и термодинамики нелинейных необратимых процессов внёс И. Р. Прягожин (I. Prigogine).  [c.315]

Введенный вновь материал распределен по всем трем разделам книги. В качестве неполного перечня новых вопросов отметим в ч. I параграфы, посвященные изложению термодинамики диэлектриков и плазмы, парадоксу Гиббса и принципу Нернста, в ч. II — теорию орто- и парамодификаций, теорию тепловой ионизации и диссоциации молекул, дебаевское экранирование, электронный газ в полупроводниках, формулу Найквиста и особенно главу Фазовые переходы , в ч. III — параграфы Безразмерная форма уравнений Боголюбова , Методы решения уравнения Больцмана , параграфы, посвященные затуханию Ландау, кинетическому уравнению для плазмы и проблеме необратимости. Существенно переработана и расширена глава Элементы неравновесной термодинамики , в которой помимо более детального рассмотрения области, близкой к равновесию, введен параграф, посвященный качественному рассмотрению состояний, далеких от равновесия.  [c.7]

При микроскопическом исследовании контакта деталей в условиях высоких нагрузок и температур установлена [56] возможность образования магмы-плазмы (рис. 5.2). Вгшимодействие микроконтактов происходит за очень короткое время (10" . .. 10 с), в течение которого к контакту подводится большая энергия. Для таких условий законы классической термодинамики не выполняются материал тонкого поверхностного слоя преобразуется, в результате в зоне соударения неровностей образуется магма-плазма процесс сопровождается эмиссией электронов. Об экзоэлектронной эмиссии при трении см. работу [151.  [c.98]


Смотреть страницы где упоминается термин Термодинамика плазмы : [c.214]    [c.228]    [c.3]    [c.91]    [c.100]    [c.21]    [c.305]    [c.356]    [c.196]    [c.254]    [c.317]    [c.616]   
Смотреть главы в:

Термодинамика  -> Термодинамика плазмы

Термодинамика, статическая физика и кинетика Изд.2  -> Термодинамика плазмы

Техническая термодинамика  -> Термодинамика плазмы


Термодинамика (1991) -- [ c.214 ]



ПОИСК



НЕКОТОРЫЕ ПРИЛОЖЕНИЯ ТЕРМОДИНАМИКИ Плазма

Новые направления в развитии термодинамики Основы термодинамики плазмы и необратимых процессов

Плазма

Термодинамика

Термодинамика плазмы. Состояние плазмы

Элементы термодинамики плазмы



© 2025 Mash-xxl.info Реклама на сайте