Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциалы степенные

Изменение значения g-потенциала при сжатии диффузного слоя показано на рис. 3.3 (по оси абсцисс отложены расстояния от поверхности частички, по оси ординат — значения g-потенциалов). Степень влияния ионов зависит от их концентрации, валентности и размеров чем выше концентрация ионов  [c.63]

Наиболее качественные результаты в отношении степени осаждения краски, равномерности и толщины красочного слоя получаются при потенциале коронирующих электродов в пределах 85—100 кв. При более низком потенциале степень осаждения краски значительно снижается, а при 50 кв электростатическое поле почти не влияет на интенсивность осаждения краски. Неудовлетворительные результаты были получены и при потенциале выше 100 кв. При этом сказывался эффект так называемого электрического ветра , нарушающего равномерность осаждения краски.  [c.258]


Из всего многообразия характеристик структуры керамических изделий наиболее важное значение имеют показатели пористости. Поры служат источником ценной информации о многих свойствах изделий. Они информируют о суммарной концентрации вакансий, химическом (термодинамическом) потенциале, степени меха-  [c.11]

Что принято понимать под степенью ионизации и эффективным потенциалом ионизации  [c.11]

Таким образом, электрохимическая гетерогенность поверхности корродирующего металла приводит к дифференциации последней на анодные (с более отрицательным электродным потенциалом Va) и катодные (с более положительным электродным потенциалом Vk) участки. Степень гетерогенности этой поверхности характеризуется разностью электродных потенциалов анодных и катодных участков, т. е. Vk — Vg (см. рис. 129).  [c.188]

После точки D скорость роста защитной пленки превышает скорость ее химического растворения и начинается процесс формирования пленки, что приводит к аномальному уменьшению анодного тока при смеш,ении потенциала в положительную сторону. Процесс формирования защитной пленки завершается в точке Е при потенциале полной пассивности Доля поверхности электрода, покрытой защитной пленкой, и степень запассивирован-ности а в интервале потенциалов могут быть оценены  [c.316]

Коррозия металла (который в простейшем случае является двухэлектродной системой) в электролитах представляет собой электрохимический процесс, скорость которого в значительной степени определяется поляризацией анодного и катодного электродных процессов, т. е. изменением их потенциалов под влиянием протекающего в данной гальванической системе тока, генерируемого в процессе коррозии.  [c.362]

Поляризационные кривые. Из вышесказанного вытекает, что по степени поляризуемости электрода можно судить о скорости протекания коррозионного процесса. Если поляризуемость электрода небольшая, то и коррозионный процесс мало тормозится. Если же при увеличении плотности тока происходит большое смещение потенциалов, это указывает на то, что коррозионный процесс сильно тормозится. Таким образом, о кинетике электродных процессов наиболее полно можно судить по зависимости  [c.32]

Различие в природе электролитов может создать разность электродных потенциалов металлов в 0,3 в. Имеются указания, что различие в степени аэрации вызывает еще большую э. д. с., равную 0,9 в. Все эти причины, а в ряде случаев действие находящихся в грунте микроорганизмов способствуют разрушению подземных металлических сооружений. Развитию коррозии подземных сооружений также способствует наличие на их поверхности прокатной окалины. В отдельных случаях разность потенциалов между окалиной и основным металлом достигает 0,45 в. На процессы подземной коррозии оказывают влияние самые разнообразные факторы, к числу которых относятся, помимо указанных выше, температура, электропроводность, воздухопроницаемость грунта, состав грунтовых вод и др. Поэтому очень трудно выделить и изучить влияние каждого фактора в отдельности.  [c.184]


Особенно часто уравнение Гиббса—Дюгема используется при постоянных Т, Р. В этом важном частном случае из того, что все химические потенциалы являются величинами интенсивными, т. е. они должны быть однородными функциями нулевой степени переменных п, вытекает (см. (3.16))  [c.88]

Расчет начинается с некоторого заданного неравновесного распределения компонентов по фазам и составляющим сложной системы. С каждым итерационным циклом это распределение вое более и более приближается к равновесному. Динамика изменения переменных в ходе расчета, если отвлечься от дискретности этих изменений во времени, напоминает аналогичные изменения в процессе релаксации неравновесной системы. При этом все использующиеся соотношения должны, очевидно, в равной степени описывать как термодинамически равновесные, так и неравновесные состояния. Но для частей системы, фаз и составляющих, применяются заранее известные равновесные значения термодинамических свойств (A if/, AGf и др.). Следовательно, эти части на каждом этапе расчета рассматриваются как внутренне равновесные, т. е. неравновесность сложной системы заключается в неравновесном распределении компонентов между ее частями, что же касается температуры, давления и химических потенциалов, то эти свойства хотя и могут менять-  [c.187]

Механические или классические системы, силы которых обладают потенциалом или обобщенным потенциалом, называют натуральными. Характерным для них является то, что функция L представима в виде функции второй степени от обобщенных скоростей. Ненатуральные системы этим свойством не обладают.  [c.87]

Рядом автором были предложены различные (подгоночные) потенциалы, соответствующие в какой-то степени потенциалу ядерных сил.  [c.132]

Во-вторых, даже если принять какой-то приближенный и упрощенный закон ядерного взаимодействия, то и в этом случае квантовомеханическая задача о ядре весьма громоздка, число ее независимых переменных равно числу степеней свободы (ЗЛ, не учитывая спиновой переменной). Здесь возникают значительно большие трудности по сравнению с теми, с которыми мы встречаемся при решении задачи об атоме. В атоме имеется динамический центр — ядро, взаимодействие электронов с которым играет основную определяющую роль. Взаимодействие электронов друг с другом может быть сведено к эффекту экранирования действия заряда ядра. Электроны атома движутся в сферически симметричном поле ядра, которое удается представить некоторым скалярным потенциалом V (г), являющимся функцией только расстояния г от ядра. Сферическая симметрия поля ядра и сравнительно простой вид потенциала V (г) существенно облегчает решение квантовомеханической задачи (например, решение уравнения Шредингера) об атоме, основанное на оболочечной модели атома. В атомном же ядре, учитывая совокупность известных фактов, нет выделенного центрального тела, так как все нуклоны, входящие в ядро, равноправны.  [c.170]

Для того чтобы суммарный потенциал типа (2.12) имел минимум, необходимо, чтобы на малых расстояниях потенциал сил отталкивания был больше потенциала сил притяжения. Принято потенциал сил отталкивания представлять в форме степенного закона UoT = blr , где показатель п равен 12, хотя такой показатель не имеет столь надежного обоснования, как показатель 6 в потенциале сил притяжения, однако выражение f/oT = b/r 2 представляет простое и хорошее приближение.  [c.67]

Если считать, что известны заряды ионов и структура кристалла (откуда можно определить постоянную Маделунга и ro= a-f +Гк), то для вычисления энергии сцепления нужно знать еще п— показатель степени в потенциале сил отталкивания. Показатель обычно определяют из сжимаемости кристалла у,. По определению,  [c.73]

Показатель степени в потенциале отталкивания Борна для различных веществ колеблется обычно от 7 до И. Коэффициент Ь определим из условия минимума энергии /Л г=г = 0. Отсюда  [c.280]

Генри в минус первой степени равен магнитному сопротивлению магнитной цепи, в которой намагничивающая сила (разность магнитных потенциалов) 1 А создает магнитный поток 1 Вб.  [c.135]

При равновесии двух фаз (и = 2) однокомпонентного вещества (/г=1) число степеней свободы f = k + 2—п=. Это видно также из условия равенства химических потенциалов T)= i" P, Т),  [c.141]


Условия равновесия. Рассмотрим раствор, состоящий из п компонентов. Каждый из компонентов распределяется по т фазам число степеней свободы рассматриваемого раствора равняется согласно правилу Гиббса п—т + 2. В состоянии равновесия химические потенциалы каждого из компонентов имеют во всех фазах одно и то же значение, т. е.  [c.499]

При давлении ру и той же температуре Т разность химических потенциалов паровой и жидкой фаз чистого /-го компонента по условиям равновесия этих фаз равняется нулю. При давлении ру Р/ разность химических потенциалов определяется из разложения ф в ряд по степеням (р—р°) фО" (р, Т) - фО (р. Г) = [ф " (ро. Т) - фО р Т) + д  [c.501]

Величину электропроводности газа можно заметно увеличить путем добавления небольшого количества паров вещества с малым потенциалом ионизации, например, цезия. Добавка паров вещества с малым потенциалом ионизации приводит к повышению степени ионизации газа а, определяемой  [c.610]

Важнейшей эмиссионной характеристикой твердых тел является работа выхода еср (е — заряд электрона, Ф — потенциал), равная минимальной энергии, которая необходима для перемещения электрона с поверхности Ферми в теле в вакуум, в точку пространства, где напряженность электрического поля практически равна нулю [1]. Если отсчитывать потенциал от уровня, соответствующего покоящемуся электрону в вакууме, то ф— потенциал внутри кристалла, отвечающий уровню Ферми. Согласно современным представлениям в поверхностный потенциальный барьер, при преодолении которого и совершается работа выхода, основной вклад вносят обменные и корреляционные эффекты, а также — в меньшей степени — электрический двойной слой у поверхности тела. Наиболее распространенные методы экспериментального определения работы выхода — эмиссионные по температурной, спектральной или полевой зависимости соответственно термо- фото- или полевой эмиссии, а также по измерению контактной разности потенциалов между исследуемым телом и другим телом (анодом), работа выхода которого известна [I, 2]. В табл. 25.1, 25.3 и 25.4 приведены значения работы выхода простых веществ и некоторых соединений. Внешнее электрическое поле уменьшает работу выхода (эффект Шоттки). Если поверхность эмиттера однородна, то уменьшение работы выхода. эВ, при наложении электрического поля напряженностью В/см, равно  [c.567]

Ионизация верхней атмосферы в сильной степени определяется влиянием Солнца степень ионизации изменяется со временем суток, с сезоном и фазой цикла солнечной активности. Сильное влияние на ионизацию оказывает также бомбардировка атмосферы частицами солнечного происхождения, вызывающими магнитные бури и полярные сияния. Область Е предположительно соответствует области диссоциации О2—>-0-1-0, а область D — ионизации О2, соответствующей первому потенциалу ионизации. Максимумы ионизации областей F, и р2 располагаются примерно на высоте 200 и 272 км соответственно. В течение ночи области F[ и F2 сливаются, образуя один слой ионизации. Слой D ночью исчезает, а слой Е заметно рассасывается.  [c.1196]

Описанный механизм кавитационного разрушения материалов является весьма схематичным и дает лишь первое представление о причинах кавитационной эрозии. Есть достаточно оснований полагать, что в этом процессе участвует еще несколько факторов. В их числе химическая коррозия, электрохимические эффекты, проявляющиеся в появлении значительных электрических потенциалов в кавитационной зоне, а также значительные местные повышения температуры н свечение. Влияет также степень насыщения жидкости газом.  [c.406]

Кинетику электродных процессов, в том числе и электродных процессов электрохимической коррозии металлов, принято изображать в виде поляризационных кривых, представляющих собой графическое изображение измеренной с помощью описанной в ч. III методики зависимости потенциалов электродов V от плотности тока i = I/S, т. е. V = f i). На рис. 136 приведены кривые анодной и катодной поляризации металла, характеризующие его поведение в качестве анода и катода коррозионного элемента. Степень наклона кривых характеризует большую (крутой ход) или малую (пологий ход) затруд-  [c.194]

Эти два деполяризационных процесса протекают параллельными, в значительной степени независимыми друг от друга стадиями, связанными только общим потенциалом, устанавливающемся на корродирующем металле.  [c.262]

Торможение процесса растворения металла может произойти, если пленка образуется на особо активных анодных участках в этом случае активность анодной поверхности уменьшается. При этом электродный потенциал металла заметно облагоряйкивается. Смещение потенциала в положительную сторону в связи с образовавшейся пассивной пленкой может служить оценкой степени пассивности металла в данных условиях по сравнению с потенциалом этого же металла с чисто11. не-запассивироваиной поверхностью.  [c.63]

Ионы галогенов в меньшей степени влияют на аНодное поведение титана, тантала, молибдена, вольфрама и циркония, и их пассивное состояние может сохраняться в среде с высокой концентрацией хлоридов, в отличие от железа, хрома и Fe—Сг-спла-вов, теряющих пассивность. Иногда это объясняют образованием на перечисленных металлах (Ti, Та, Мо и др.) нерастворимых защитных основных хлоридных пленок. Однако в действительности подобная ситуация возникает благодаря относительно высокому сродству этих металлов к кислороду, что затрудняет замещение ионами С1 кислорода из пассивных пленок, вследствие более высоких критических потенциалов металлов, выше которых начинается питтингообразование.  [c.85]

Кадмиевые покрытия получают почти исключительно электро-осаждением. Разница в потенциалах между кадмием и железом не столь велика, как между цинком и железом, следовательно степень катодной защиты стали покровным слоем кадмия с ростом размера дeфeкtoв в покрытии падает быстрее. Меньшая разность потенциалов обеспечивает важное преимущество кадмиевых покрытий применительно к защите высокопрочных сталей (твердость Яр > 40, см. разд. 7.4.1). Если поддерживать потенциал ниже значения критического потенциала коррозионного растрескивания под напряжением (КРН), но не опускаясь в область еще более отрицательных значений, отвечающую водородному растрескиванию, то кадмиевые покрытия надежнее защищают сталь от растрескивания во влажной атмосфере, чем цинковые. Кадмий дороже цинка, но он дольше сохраняет сильный металлический блеск, обеспечивает лучший электрический контакт,, легче поддается пайке и поэтому нашел использование в электронной промышленности. Кроме того, он устойчивее к воздействию водяного конденсата и солевых брызг. Однако, с другой стороны, кадмиевые покрытия не столь устойчивы в атмосферных условиях, как цинковые покрытия такой же толщины.  [c.238]


Хром (Е° = —0,74 В) более отрицателен в ряду напряжений, чем железо (Е° = —0,44 В). Однако благодаря склонности к пассивации (Ер = 0,2 В) потенциал хрома в водных средах обычно положителен по отношению к потенциалу стали. При контакте со сталью, особенно в кислых средах, хром активируется. Следо вательно, коррозионный потенциал стали с хромовым покрыгием которое в некоторой степени всегда пористо, более отрицателен, чем потенциал пассивации хрома [191. В указанных условиях хром, подобно олову, выполняет функцию протекторного покрытия однако это связано с его активацией, а не с образованием комплекс ных соединений металлов. Благодаря стойкости слоя металличе ского хрома предупреждается подтравливание наружного полимер ного покрытия.  [c.241]

Для того чтобы вещество могло выполнять функцию ингибитора травления, оно должно иметь в общем случае одну или несколько полярных групп, посредством которых молекула могла бы присоединяться к поверхности металла. Обычно они представляют собой органические соединения, содержащие азот, амины, серу или группу ОН. Важное значение для эффективности ингибитора имеют размер, ориентация, форма молекулы и распределение электрического заряда в ней. Например, обнаружено, что коррозия железа в 1т растворе соляной кислоты замедляется производными тиогликолевой кислоты и З-меркаптонронионовой кислоты в степени, которая закономерно зависит от длины цепи соединений [32]. Возможность адсорбции соединения на поверхности данного металла и относительная сила связи адсорбции часто зависят от такого фактора, как заряд поверхности металла [33]. Катодная поляризация в присутствии ингибиторов, которые лучше адсорбируются при потенциалах более от-  [c.269]

Потенциал кадмия во многих средах близок потенциалу алюминия, поэтому кадмированные сталью винты, болты, детали и пр. можно применять в непосредственном контакте с алюминием. Считается, что можно с успехом использовать и оловянные покрытия. Цинк имеет несколько отличное значение потенциала, однако его также можно применять в большинстве случаев. В контакте с алюминием цинк является анодом и, следовательно, катодно защищает алюминий против инициации питтинга в нейтральных и слабокислых средах (см. разд. 12.1.6). Однако в щелочах происходит перемена полярности, и цинк ускоряет коррозию алюминия. Магний является анодом по отношению к алюминию, но при контакте этих металлов (например, в морской воде) возникает столь большая разность потенциалов и протекает столь большой ток, что алюминий может оказаться катодно переза-щищенным и вследствие этого будет разрушаться. Алюминий корродирует в меньшей степени, если он легирован магнием. Показано, что алюминий высокой чистоты может находиться в контакте с магнием без вреда для обоих металлов [24], поскольку в отсутствие примесей железа, меди и никеля, действующих как эффективные катоды, гальванический ток в этой паре невелик.  [c.351]

Легирование никеля молибденом в значительной степени повышает его стойкость в восстановительных средах. Как в аэрированных, так и в деаэрированных кислотах эти сплавы имеют потенциалы коррозии более отрицательные, чем их Фладе-потен-циалы [4, 5], т. е. по определению 1 в гл. 5 их нельзя считать пассивными. Так, все коррозионные потенциалы никелевых сплавов с 3— 22,8 % Мо в насыщенном водородном 5 % растворе HjSO не отличаются более чем на 2 мВ от потенциала платинированного платинового электрода в том же растворе [4]. Несмотря на отрицательные значения коррозионного потенциала, сплав, содержащий, например, 15 % Мо, корродирует в деаэрированном 10 %  [c.361]

Стандартный потенциал кобальта близок к потенциалу никеля и всего на 27 мВ отрицательнее его. Так же как никель, кобальт сильно корродирует в растворах кислот и солей, обладающих окислительными свойствами, например HNO3 и Fe lj. Он стоек в горячих и холодных щелочах, но в меньшей степени, чем никель. Кобальт корродирует также в аэрированных водных растворах аммиака с образованием растворимых комплексов, таких как Со (МНз)б .  [c.369]

Лий вызывают необходимость разработок специальных технологических процессов нанесения покрытий. Кроме того, при создании технологии следует учитывать массовый выпуск изделий и трудности оценки качецтва выполненной операции. Поэтому методы получения заданной сееиени черноты на узлах и деталях электровакуумной аппаратуры значительно отличаются от используемых в других отраслях техники. Увеличение излучательной стособности, применяемое в электровакуумной иромыш-леннО Сти, преследует различные цели. В некоторых случаях, увеличивая степень черноты, добиваются уменьшения температуры деталей, а это в свою очередь приводит к пониженному значению газовыделения в условиях эксплуатационного вакуума. Часто снижением температуры подавляют эмиссию катода или стабилизируют контактную разность потенциалов [45].  [c.241]

Взаимодействие нуклона с нуклоном. Взаимодействие между нуклонами (протонами и нейтронами) может быть представлено с очень хорошей степенью точности потенциалом Юкавы U(r) ——(rolr)Uoe- o, где Uo я 50 МэВ и Го 1,5-10 см.  [c.177]

При равновесии двух фаз (и = 2) однокомпонёнтного вещества (А =1) число степеней свободы /= - -2 —и = 1. Это видно также из условия равенства химических потенциалов р, 7 ) = ц"(р, Т), которое связывает температуру и давление в фазах. Одну из этих переменных можно взять за независимую, тогда  [c.204]

Из разложения химических потенциалов ф< , ф в ряд по степеням р — Ps при Т = onst имеем  [c.231]

Зависимость степени ионизации газа от температуры и давления. Для того чтобы произошла ионизация атома при столкновении его с другой частицей, необходима энергия Ецон для отрыва электрона. Энергия он называется ионизационным потенциалом. Значения ионизационного потенциала для разных веществ приведены в таблице.  [c.637]

В табл. 19.2 собраны данные о потенциале ионизации легких и средних атомных ионов, характеризующие все ступени ионизации ионов с зарядом ядра Z<36 и представляющие интерес для физики высокотемпературной плазмы. Большая часть данных для низких степеней ионизации ионов была получена на основе обработки наблюдаемых спектров оптических переходов при высоких уровнях возбуждения частиц, тогда как в случае многократной ионизации использовались различные приемы экстраполяции потенциалов вдоль изоэлектронных серий [2,5,6]. В табл. 19.3 приведены значения потенциала ионизации одно-, двух- и трехзарядных атомных ионов с 37схождения линий в атомных спектрах [2,3,5,6]. Погрешности в определетш искомых значений потенциалов ионизации атомных частиц в табл. 19.1 —19.3 были учтены нами при округлении значащих цифр в пределах 1 для последней приведенной цифры.  [c.411]

Аналогичные опыты в дальнейшем были произведены с другими атомами. Для всех них были гюлу-чены характерные разности потенциалов, называемые резонансными потенциалами. Для калия резонансный потенциал равен 1,63 В, для натрия-2,12 В и т.д. Резонансный потенциал соответствует переходу атома с основного состояния (с минимальной энергией) в ближайшее возбужденное состояние. Однако у атома кроме ближайшего (первого) возбужденного состояния имеется множество других возбужденных состояний. Поэтому если атому сообщить энергию, достаточную для перехода в более высокое возбужденное состояние, он такой переход может совершить. Для исследования высших степеней возбуждения атома используется несколько видоизмененная методика, однако принцип исследования не меняется и нет необходимости описывать соответствующие опыты.  [c.77]


Смотреть страницы где упоминается термин Потенциалы степенные : [c.74]    [c.480]    [c.55]    [c.326]    [c.87]    [c.152]    [c.404]    [c.215]   
Теория и приложения уравнения Больцмана (1978) -- [ c.83 , c.84 , c.110 , c.204 , c.209 , c.465 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте