Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Агрессивные среды углеродистые

На возникновение коррозионного растрескивания металлов и на его интенсивность оказывают большое влияние характер агрессивной среды, ее концентрация, температура, структурные особенности металла и др. Наибольшее число разрушений аппаратов из углеродистых и низколегированных сталей наблюдается в растворах щелочен, азотнокислых солей, влажном сероводороде. Известны также отдельные случаи разрушения этих сталей в азотной кислоте, смеси азотной кислоты с серной кислотой и других средах.  [c.102]


Как было указано, содержание небольших количеств кремния в конструкционных углеродистых сталях и чугупах не оказывает существенного влияния на коррозионную стойкость. Только при увеличении его содержания до 14—15% сплавы становятся коррозионностойкими во многих агрессивных средах.  [c.239]

Одним из наиболее распространенных и перспективных способов защиты металла от коррозии является ингибирование агрессивной среды. С помощью ингибиторов коррозии зачастую удается значительно продлить срок службы оборудования, повысить его надежность. а в ряде случаев использовать углеродистые стали вместо легированных.  [c.64]

Чугун, углеродистые и легированные стали подвержены различным видам коррозии в зависимости от состава, структуры и состояния их поверхности и свойств агрессивной среды природы растворенных компонентов, величины pH, аэрации, пассивирующего действия, образования защитных пленок.  [c.92]

Материал катода должен быть устойчивым при высоких плотностях катодного тока (5—500 А/м ) и не подвергаться коррозии в рабочей среде в периоды выключения тока. В зависимости от агрессивности среды применяют катоды из кремнистого чугуна, молибдена, сплавов титана, из нержавеющих и углеродистых сталей, из никеля. Расположение катодов должно обеспечивать наиболее равномерное распределение тока на защищаемой поверхности. Разработано несколько вариантов конструкций узлов катода применительно к конкретным изделиям.  [c.145]

Для углеродистых сталей обнаружена определенная пропорциональ- ность между скоростью зарождения и скоростью роста усталостной трещины и в воздухе, и в коррозионных средах. Повышение частоты нагружения должно приводить к снижению скорости роста усталостной трещины, выраженной в приращении ее длины за цикл деформирования, что подтверждается многими экспериментами. При низких значениях АК эффект частоты незначительный, с увеличением АК он возрастает (см. рис. 4, участки//и///). Агрессивная среда (включая и влажный воздух) заметно влияет на ускорение процесса усталостного разрушения металлов, в частности алюминиевых сплавов. Дистиллированная вода, например, меняет характер проявления частотного эффекта при усталости алюминиевого сплава [187]. Для сплава 7075-Т6 при Д/f < 1/3 увеличение частоты нагружения от 57 до 147 Гц уменьшает скорость роста трещины. При высоких значениях А/С увеличение частоты ускоряет процесс коррозионно-усталостного разрушения. Имеющиеся в литературе немногочисленные данные указывают на то, что в титановых сплавах эффект частоты проявляется сильнее, чем в алюминиевых.  [c.118]


Г.В.Карпенко [25] и др. показали, что влияние концентрации напряжения на выносливость углеродистых сталей зависит от агрессивности среды. Чем выше относительная агрессивность среды, тем меньше влияние концентрации напряжений  [c.136]

К числу таких покрытий на углеродистых и легированных сталях относятся покрытия на основе алюминия, кадмия, цинка. Ц1<Н1 давно и широко применяют в различных отраслях техники, так как он надежно защищает металлические изделия от коррозии и коррозионно-механического разрушения. Алитирование же как способ антикоррозионной защиты пока не нашло достаточного распространения, хотя в ряде агрессивных сред, особенно содержащих сернистые соединения, оно эффективнее цинкования.  [c.184]

Ускорение коррозионного процесса не должно быть вызвано изменением его механизма. Например, при определении стойкости углеродистых и низколегированных сталей против питтинговой и язвенной коррозии даже незначительное увеличение агрессивности среды (повышение температуры, концентрации раствора, понижение pH) может привести к переводу стали в активное состояние, то есть смене механизма коррозионного процесса.  [c.142]

С Мо, W, Nb и Ti тантал образует непрерывный ряд твердых растворов. Сплавы тантала имеют повышенные прочностные характеристики. Как конструкционный материал тантал находит применение в химическом машиностроении. Из него изготавливают теплообменную аппаратуру для получения брома из смеси хлора и брома, для дистилляции соляной и азотной кислот из неочищенного сырья, при получении бромида этилена и хлористого бензола, при регенерации серной кислоты. Из тантала изготавливают нагреватели, работающие в особо агрессивных средах, например, в смеси хромовой и серной кислот, при дистилляции пероксида водорода. В ряде случаев тантал используют для плакировки аппаратуры из углеродистой стали.  [c.222]

Считается, что наиболее склонны к коррозионному растрескиванию стали с мартенситной структурой углеродистые феррито-перлитные и перлитные стали обнаруживают склонность к коррозионному растрескиванию только при высоких напряжениях (>00.2) и в сильно агрессивных средах (например, нитраты щелочных и щелочноземельных металлов). Хромистые аустенито-ферритные и ферритные стали менее склонны к коррозионному растрескиванию при отсутствии в них мартенсита.  [c.254]

Кроме углеродистых сталей для изготовления ответственных элементов находят применение также низколегированные стали, обладающие более высокими значениями предела текучести и временного сопротивления, менее склонные к хрупкому разрушению при пониженных температурах, обладающие повышенной стойкостью против коррозии. Так в условиях агрессивных сред рекомендуется применять стали с добавкой меди, повышающей их коррозионную стойкость.  [c.483]

Изменение температуры может оказывать влияние на полярность металлов при их совместной эксплуатации в агрессивной среде. Так, в холодной водопроводной воде цинковое покрытие по отношению к углеродистой стали является анодом, но в горячей воде полярность этой коррозионной пары меняется потенциал цинка увеличивается и он становится катодом по отношению к углеродистой стали.  [c.179]

Насадка для колонных аппаратов (кольца Рашига) футеровочные штучные изделия (кирпич, плитка) для антикоррозионной зашиты емкостной аппаратуры из углеродистой стали и других конструкционных материалов от воздействия агрессивных сред  [c.59]

При изготовлении таких аппаратов следует следить за тем, чтобы торцы двухслойных листов нигде не соприкасались с агрессивной средой. Нарушение этого правила может привести к контактной коррозии, в результате которой основной слой углеродистой стали (анод) подвергнется усиленному разрушению.  [c.179]


К химической аппаратуре, работающей в условиях воздействия разнообразных агрессивных сред и повышенных температур, предъявляются особые требования в отношении правильного выбора материалов. Нередко для изготовления оборудования расходуются дефицитные хром- и никельсодержащие нержавеющие стали и цветные металлы, которые могут быть заменены углеродистыми сталями, защищенными полимерными материалами.  [c.65]

Таким образом, в зависимости от температурных условий окислении железа, можно получить тот или иной окисел. На этом ос(ювапа, в частности, возможность получения па поверхности углеродистой стали слоя магнетита, обладающего защитными свойствами при сравнительно невысокой агрессивности среды (окисление ведут при температуре не выше 570° С, чтобы ие образовался слой РеО).  [c.139]

Гайки изготовляют из тех же сталей или несколько менее прочных. При выборе класса прочности для резьбопых деталей учитывают значение и характер нагрузки (статическая или переменная), y JЮвия работы (температура, агрессивность среды и др.), способ изготовления и др. Классы прочности и механические свойства некоторых марок углеродистых сталей для резьбовых деталей приведены в табл. 4.3.  [c.90]

Наибольший интерес представляют углеродистые стали с добавкой хрома, который значительно повышает коррозионную стойкость материала. Хром относится к самоПассивирующим материалам. Вследствие пассивации хрома, входящего в состав сплава, на поверхности последнего образуется пассивная пленка (защитный слой оксидой nim адсорбированного кислорода), существенно повышающая коррозионную стойкость сплава. Установлено, что для образования нержавеющей стали минимальное содержание хрома (по весу) Должно быть не ниже 13-15 %. Стали, содержащие 36 % хрома, приобретают коррозионную Стойкость даже в таких агрессивных средах, как царская водка. Однако в неокисляющихся агрессивных средах заищтная пленка на поверхности хромистых сталей не образуется, поэтому в растворах серной и соляной кислот такие стали активно корродируют.  [c.39]

Цементация поверхности, повышающая прочность и твердость поверхностного слоя и создающая там сжимающие внутренние напряжения 1-го рода, увеличивает сопротивление усталости. Сочетание цементащ1и понерхности с последующей термообработкой (высокий отпуск) существенно повышает предел усталости углеродистых и легированных сталей в атмосфере и слабо агрессивных средах. Анапогичный эффект получается и при азотировании поверхности углеродистых сталей. Установлено, что сульфидирование и сульфоцианирование деталей также зна чительно повышает их коррозионно-механическую стойкость В некоторых случаях коррозионно-механическая стойкость ста лей повышается борированием их поверхности. Коррозионно-ус талостная прочность стали возрастает й после силицирования 71]  [c.122]

В настоящее время анодная защита сформировалась как самостоятельное направление электрохимической защиты. С ее появлением значительно возрос интерес к электрохимической защите в химической промышленности. Катодная защита, широко распространена для подземных и гидротехнических сооружений и для реакторов в химической промышленности она используется в очень ограниченных масштабах, в основном для защиты конструкций в технической воде, сточных водах предприятий и в ряде сред, содержащих ионы хлора. Однако в агрессивных средах ее применение затруднено, так как для достижения защитного катодного потенциала необходимо прилагать высокую плотность тока, при которбй на защищаемой поверхности происходит интенсивное выделение водорода. Так, в 0,65 и. серной кислоте защитная плотность тока для углеродистой стали при катодной защите равна примерно  [c.69]

Несмотря на то что нержавеющие стали и сплавы созданы специально для эксплуатации в различных агрессивных средах, их коррозионная усталость изучена меньше, чем углеродистых сталей. В ранних работах, выполненных в 20-х годах Мак Адамом и другими исследователями, показано, что нержавеющие стали хорошо сопротивляются коррозионноусталостному разрушению в пресной воде и ее парах, 3 %-ном растворе Na I, а также других сравнительно малоагрессивных средах. Однако некоторые нержавеющие-стали, например мартенситного класса, обладая высокой коррозионной стойкостью в ненапряженном состоянии, имеют низкое сопротивление коррозионной усталости. Часто условный предел коррозионной выносливости этих сталей такой, как и обычных углеро-  [c.58]

Диффузионное насыщение стальных изделий бором приводит к образованию на их поверхности слоя, состоящего из боридов FeB и Fe В, а также боридного цементита, если в стали содержится повышенное содержание углерода. Бориды железа обладают высокой коррозионной стойкостью в ряде агрессивных сред,в связи с чем можно было бы ожидать существенного повышения сопротивления коррозионно-усталостному разрушению борированных деталей. Нами показано, что борирование при глубине слоя боридов 0,1-0,2 мм повышает предел выносливости образцов из средйе-углеродистой стали с 250 до 300-310 МПа, а в 3 %-ном растворе Na I условный предел выносливости увеличивается с 50 до 100 МПа. Отрицательное влияние борирование оказывает на сопротивление усталости высокопрочных легированных и закаленных сталей, у которых предел выносливости после насыщения может снизиться в несколько раз. Условный предел выносливости при этом увеличивается незначительно. Таким образом, наблюдается несоответствие между коррозионной стойкостью в ненапряженном состоянии и коррозионной выносливостью борированных сталей. Это несоответствие объясняется пористостью боридного слоя, которая при действии циклических механических напряжений обеспечивает лучший контакт коррозионной среды о основным металлом, чем в ненапряженном металле.  [c.174]


Видимый характер и интенсивность этих повреждений могут быть различными в зависимости от свойств конструкционного материала и агрессивной среды. В качестве последней мы рассмотрим пресную воду, т. е. среду малой агрессивности, которая тем не менее сильно снижает сопротивление усталости конструкционных элементов из углеродистых, хромисто-кремниевых, а при больших долговечностях — также и нержавеющих хромистоникелевых сталей. Картину развития макроскопических повреждений на образцах углеродистых сталей, омываемых в процессе циклического нагруження водой, можно наблюдать с помощью микроскопа с небольшим увеличением (примерно X100). Уже после числа циклов нагружения, составляющих 5—10 % от полной долговечности образца на данном уровне напряжения, на поверхности металла наблюдаются пятнами следы коррозионного  [c.168]

Эмалевые покрытия, изготовляемые в основном из дешевых материалов, составляют не более 6% веса защищаемых деталей и придают им коррозионную стойкость в агрессивных средах (кислота), а также высокую теплостойкость в пределах 450—760° С. Специальные жаростойкие керамические покрытия, состоящие из эмалевых стекол и огнеупорных окислов, выдерживают эксплуатацию в течение 1000 ч при температурах до 1100° С. Морозостойкость стальных эмалированных деталей достигает— 70° С, а чугунных — 30° С. Такие покрытия на деталях из углеродистой стали выдерживают повторяющуюся смену температур от - 540° до —50° С, а на деталях из нержавеющей стали от -Ь980° до —50° С.  [c.299]

Внутренняя поверхность корпуса фильтра при работе с агрессивной средой (водород-катионитные и анионитные фильтры) должна иметь противокоррозионное защитное покрытие. Вопросы противокоррозионной защиты водоподготовительного оборудования и в первую очередь фильтров становятся в настоящее время особенно актуальными, так как, во-первых, все большее распространение на электростанциях получают методы обработки воды, при которых оборудование работает в агрессивных средах, во-вторых, вследствие ряда причин возникает необходимость максимально ограничивать потребление в этих случаях нержавеющих высоколегированных сталей, заменяя их углеродистой сталью с соответствующими защитными покрытиями, и, в-третьих, жесткие нормы качества питательной воды на электростанциях высокого и сверхвысокого давлений, ограничивающие содержание в воде железа в количестве не больше 20 мкг1л, заставляют все более расширять область применения противокоррозионной защиты, распространяя ее на все фильтры, независимо от агрессивности рабочей среды. В качестве защитного покрытия применяют преимущественно перхлорвиниловые лаки и гуммирование. Срок службы лаковых покрытий 3—5 лет. Более надежным покрытием является гуммирование, срок службы которого составляет не менее 15 лет.  [c.264]

Весь фронтовой трубопровод фильтров, работающих с агрессивной средой (водород-катионитные и анионитные фильтры), изготовляется из нержавеющей стали 1Х18Н9Т. Трубопроводы диаметром 50 мм и больше устанавливают также из углеродистой стали с защитой внутренней поверхности пер хлорвиниловыми лаками или путем гуммирования. Последнее является наиболее дешевым и надежным решением защиты трубопроводов для таких фильтров. Применение для фронта фильтров пластмассовых трубопроводов пока не получило широкого распространения вследствие их хрупкости и ограниченного рабочего давления для труб диаметром 100 мм и больше.  [c.281]

В большинстве промышленных агрессивных сред издержки, обусловленные потерями металла с равных площадей за одинаковый период времени, при использовании титана значительно ниже, чем в случае применения нержавеющей стали. Соответственно, стоимость титанового оборудования оказывается лишь в 2—3 раза выше, чем стоимость стального, а в ряде случаев — одинаковой [33]. Высокая коррозионная стойкость титана обусловливает значительно более долгий срок службы изделий, работающих в агрессивных промышленных средах, по сравнению с изделиями из таких материалов, как чугун, углеродистые и легированные стали, что существенно снижает затраты на ремонт и переоборудование. Так, в производстве никеля насосы из хромо-никель-молибденовой сталс (12—25% Ni 18 о Сг, 3% Мо) выходили из строя через 20—30 дней, насосы из менее легированной стали Х18Н12МЗТ — через 3—5 дней. Аналогичные насосы из титана не имели коррозионных повреждений и через 3 года службы. С учетом годовых амортизационных затрат экопоч 1Ч ский эффект от- замены только одного стального насоса производительностью 200 м ч на титановый составил около 5000 руб./год даже без учета значительной экономии от сокращения численности ремонтного и дежурного персонала [32]. При замене стали на титан в насосах производительностью 400 м /ч годовой экономический эффект вырастал вдвое. -  [c.239]

Технологические среды винодельческого производства весьма агрессивны к углеродистым сталям. Агрессивность различных сортов вин определяется содержанием в них сахаров и спирта, которое значительно колеблется в зависимости от сорта вина. Так, например, столовые (сухие) вина не содержат сахаров, а только 9-14 об. % спирта, крепленые вина содержат 8-10 % сахаров и 16-20 об. % спирта, сладкие десертные вина — 8-20 % сахаров и более 13 об. % спирта, столовые полусладкие вина — 3-7 % сахаров и 7-12 об. % спирта.  [c.514]

Ковлей и др. [63] показали, что янодттяя зятпита эффективна при уменьшении коррозионной усталости как для углеродистых, так и нержавеющих сталей. Это воздействие было самым заметным для сплавов высокой коррозионной стойкости, на которых обеспечивается образование устойчивой пассивной пленки. Во многих случаях при использовании анодной защиты предел коррозионной усталости в агрессивной среде выше, чем на воздухе (рис. 1.7).  [c.22]

В концентрированной серной кислоте в качестве материала катода используют также кремнистый чугун — ферросилид С-15 [11]. Испытания в течение 500 ч при поляризации катодным током плотностью 1—100 А/м показали высокую коррозионную устойчивость такого катода. В серной кислоте находят применение катоды из молибдена [12], стали ЭИ-943 [13, 14], свинца [15], тантала [16] сплавы Ti — Pt, Ti — Та, Ti — Nb можно использовать в качестве катодного материала в различных агрессивных средах [17]. В аммиачных растворах используют аустепитную хромоникелевую сталь [18], сплав хастел-лой [19], в щелочной среде — никель [20], углеродистую сталь [21].  [c.72]

Долговечность полимерных покрытий на металле в агрессивных средах зависит от их защитных свойств, определяющихся диффузионной проницаемостью для компонентов среды. Полан- , как и другие полтюры, проницаем для летучих кислот. Нами изучены защитные свойства этого покрытия на углеродистой стали в соляной, плавиковой и сернистой кислотах при 25 и 60°С.  [c.151]

Применение биметаллических материалов в установках элект рической ж ультразвуковой обработки ограничено в основном изготовлением термочувствительных элементов контрольных и сигнальных устройств и релуляторов и по условиям осуществления совершенно аналогично их применению в об-щеэлектротекнической аппаратуре. Небольшое применение находят биметаллические материалы (типа легированная сталь—углеродистая сталь) для изготовления корпусов аппаратов и облицовки ванн, соприкасающихся с агрессивными средами, а также ((медь—сталь, латунь—сталь) для изготовлениж электродов-инструментов при электроэрозионной обработке. Сведения о би-  [c.60]


Производство хлорбензола отличается высокой агрессивностью сред. Ранее эксплуатировавшиеся дефлегматоры из углеродистой стали и нернчавеющей стали Х18Н10Т имели срок службы не более 2-х лет с постоянными ремонтами через 3—6 месяцев. Дефлегматоры из титана (с поверхностью теплообмена 16 м , 30 м , 52 м ) эксплуатируются без ремонтов уже более 5-ти лет в среде сложного состава (пары хлорбензола — 40—60%, пары бензола — 35—50%, соляная кислота — 0,2%, полихлориды — остальное) при температуре 80—90°С.  [c.48]

Приведенные результаты показывают, что при выборе углеродистой стали в качестве конструкционного материала для деталей, подвергающихся гидроэрозии, следует отдавать преимуш,ество качественным доэвтоидным сталям с повышенным содержанием углерода (например, стали 35, 40 и 45). Эти стали после соответствующей термической обработки обладают высоким сопротивлением струеударному воздействию. Однако их низкая коррозионная стойкость не позволяет рекомендовать их для изготовления деталей, работающих в условиях постоянно действующей агрессивной среды. В этих условиях влияние электрохимической коррозии настолько велико, что применение таких сталей становится невыгодным. Хорошие результаты получают в случае, если поверхность деталей, изготовленных из углеродистых сталей, можно защитить от электрохимической коррозии нанесением диффузионных покрытий (например, хромом или титаном).  [c.130]


Смотреть страницы где упоминается термин Агрессивные среды углеродистые : [c.147]    [c.309]    [c.124]    [c.32]    [c.186]    [c.191]    [c.289]    [c.218]    [c.169]    [c.533]    [c.537]    [c.122]    [c.101]    [c.403]    [c.281]    [c.178]   
Коррозионная стойкость материалов (1975) -- [ c.88 ]



ПОИСК



Агрессивные среды

Р углеродистое

С агрессивная

Среды агрессивность



© 2025 Mash-xxl.info Реклама на сайте