Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кривизна чистого изгиба

Здесь обнаруживается противоречие с изложенным выше утверждением, что при чистом изгибе кривизна постоянна lk = — =  [c.279]

Таким образом, в пределах указанных пренебрежений формулы (4.6) и (4.8), выведенные для определения нормальных напряжений, применимы не только при чистом изгибе, но и при поперечном. В такой же мере применима и формула (4.5), дающая зависимость кривизны бруса от изгибающего момента.  [c.134]

Рассмотрим чистый изгиб бруса постоянного поперечного сечения под действием. моментов УИ зр, приложенных на торцах бруса (рис. 11.8). В любом сечении бруса изгибающий момент один и тот же, и изменение кривизны для всех участков будет одинаковым. Поэтому при чистом изгибе ось бруса принимает форму дуги окружности. Верхние волокна бруса удлиняются, а нижние укорачиваются. В средней части бруса находится слой волокон п—п, который не изменяет своей длины. Плоскость, содержащая эти волокна, называется нейтральной плоскостью.  [c.138]


Балка длиной I и площадью поперечного сечения F подвергается чистому изгибу моментами М, приложенными по концам. Пусть при значении момента Мо кривизна балки щ зафиксирована. Пользуясь законом старения e = a/E+Bf(t)a", найти релаксацию изгибающего момента вследствие ползучести.  [c.316]

Полученный результат (< 2=0) объясняется тем, что в этом частном случае имеет место чистый изгиб сосредоточенными моментами, возникающими в сечениях Л и Б. В этом случае кривизна осевой линии стержня хзо равна кривизне осевой линии канала 2зо. поэтому контактное давление меледу поверхностью канала и стержнем отсутствует.  [c.226]

Рассмотрим участок балки, подверженный деформации чистого изгиба. Двумя поперечными сечениями АВ и СО выделим элемент балки бесконечно малой длины (к (рис. 23.12). Радиус кривизны нейтрального слоя обозначим р.  [c.245]

Это уравнение параболоида вращения. Искривленная пластина в этом случае представляет часть сферы, так как радиусы кривизны одинаковы во всех плоскостях и во всех точках пластины. Это следует из того, что Ма = тпо формуле (6.24) при любом а. Параболоид (6.34), очень близкий к сфере, получился как результат использования приближенных линейных уравнений (точно так же при чистом изгибе балки из линейного уравнения ее упругая линия получается очерченной по квадратной параболе вместо окружности).  [c.166]

Двусторонняя внешняя выточка (рис. 265). С увеличением глубины двусторонней симметричной выточки коэффициент концентрации приближается к своему предельному значению. При этом в силу так называемого закона затухания, согласно которому чем больше максимальное напряжение в месте концентрации, тем резче затухание напряжений при удалении от наиболее напряженной зоны, существенное влияние на коэффициент концентрации оказывает только кривизна у дна выточки. Форма выточки в остальной ее части мало влияет на коэффициент концентрации. Учитывая последнее и принимая, что выточка имеет форму гиперболы, формулу для определения максимальных напряжений, выведенную методами теории упругости для случая чистого изгиба (рис. 266), можно представить  [c.285]

Вывод формулы для нормальных напряжений при изгибе бруса большой кривизны. Рассмотрим случай чистого изгиба кривого бруса (рис. 444). Для прямого стержня мы сначала предположили неизвестным положение нейтрального слоя, а затем выяснили, что он находится на уровне оси стержня. Здесь также предположим, что  [c.458]


Это означает, что перемещение любого поперечного сечения складывается из поступательного перемещения —К sin 0, одинакового для всех точек сечения, и поворота поперечного сечения на угол 4В0/ относительно центра кривизны О (рис. 42). Мы видим, что при чистом изгибе поперечные сечения остаются плоскими, как это обычно и предполагается в элементарной теории изгиба криволинейных стержней.  [c.94]

Когда компоненты напряжений найдены, перемещения и, v и W можно определить тем же путем, как это делалось в случае чистого изгиба (см. стр. 294). Рассмотрим кривую прогибов консоли. Кривизны этой линии в плоскостях хг и уг с достаточной степенью точности определяются значениями производных д и/дг и d v/dz при л = у = 0. Эти величины можно найти из уравнений  [c.380]

Под действием моментов М стержень изогнется. Так как в любом сечении возникает один и тот же изгибающий момент, то в случае однородного стержня изменение кривизны для всех участков будет одним и тем же. Следовательно, при чистом изгибе ось однородного стержня принимает форму дуги окружности.  [c.167]

Образование деформаций при чистом изгибе можно рассматривать как результат поворота плоских поперечных сечений одно относительно другого (рис. 4.12). Рассмотрим два смежных сечения, расположенных между собой на расстоянии dz (рис. 4.13). Примем левое сечение условно за неподвижное. Тогда в результате поворота правого сечения на угол dO верхние слои удлинятся, а нижние - укоротятся. Очевидно, существует слой, в котором удлинения отсутствуют. Назовем его нейтральным слоем и отметим D. В результате поворота сечений изменение кривизны нейтрального слоя будет следующим  [c.168]

Таким образом, при чистом изгибе напряжения в поперечном сечении изменяются по линейному закону. Геометрическое место точек в сечении, удовлетворяющее условию ст = О, называется нейтральной линией сечения. Нейтральная линия, очевидно, перпендикулярна к плоскости кривизны изогнутого стержня.  [c.169]

Формула (7.17) показывает, что при прямом чистом изгибе кривизна изогнутой оси бруса прямо пропорциональна изгибающему моменту и обратно пропорциональна произведению модуля упругости Е на момент инерции J . Произведение EJ будем называть жесткостью сечения при изгибе] она выражается в Н-м , кН-м и т. д.  [c.247]

При чистом изгибе балки постоянного сечения изгибающие моменты и жесткости сечений EJ постоянны по ее длине. В этом случае радиус р кривизны изогнутой оси балки имеет постоянное значение [см. выражение (7.16), т. е. балка изгибается по дуге окружности].  [c.247]

Чему равна кривизна оси балки при чистом изгибе Выведите соответствующую формулу.  [c.337]

К 10.2. 3. Как распределены нормальные напряжения в поперечном сечении бруса большой кривизны при чистом изгибе и по какой формуле вычисляются их величины Выведите эту формулу.  [c.424]

Где проходит нейтральная ось при чистом изгибе бруса большой кривизны  [c.424]

Подтверждается ли гипотеза плоских сечений при точном решении задачи о чистом изгибе бруса большой кривизны  [c.118]

Сечения при чистом изгибе остаются плоскими при деформации, и величина деформаций г = у/р, где р — радиус кривизны срединного слоя.  [c.296]

Каким образом можно вычислить радиус кривизны р при упругопластическом чистом изгибе  [c.314]

Кстати, мы уже знаем, что при малых перемещениях брус в условиях чистого изгиба принимает форму параболы. А теперь утверждаем, что это окружность... Противоречие совершенно естественное. Разумно рассматривая перемещения как малые, мы в свое время пренебрегли слагаемым в знаменателе выражения кривизны  [c.64]

Исходя из этих гипотез, найдем величину удлинения какого-либо волокна балки при чистом изгибе. Положим, что два близких поперечных сечения балки (рис. 99) повернулись одно относительно другого на угол Лф. Радиус кривизны нейтрального слоя балки, или ее изогнутой оси, обозначим р, а длину волокна, лежащего в нейтральном слое между рассматриваемыми сечениями, — s. Расстояния у условимся считать положительными в сторону выпуклости и отрицательными в сторону вогнутости. Абсолютное удлинение рассматриваемого волокна As = Sj — s, а относительное удлинение  [c.108]


Мх (в силу ТОГО, что изгиб чистый) и Е1х (в силу того, что рассматривается призматический брус). Постоянство вдоль оси балки величины Кд.= 1/р (кривизны) означает, что изогнутой осью призматической балки при чистом изгибе является дуга окружности. Во-вторых, чем больше величина Е1х, тем меньше рх- Вследствие этого Е1X естественно назвать жесткостью стержня при изгибе. Этот фактор имеет физико-геометрическую природу. Множитель Е характеризует жесткость материала, а множитель Iх— жесткость балки, обусловленную геометрическими свойствами сечения (чем больше 1х, тем жестче балка). Линейку значительно труднее согнуть в ее плоскости, нежели расположив плашмя (рис. 12.8).  [c.110]

Точное и приближенное уравнения. При выводе формулы для нормального напряжения в случае чистого изгиба балки была получена зависимость, связывающая кривизну х =1/р с изгибающим моментом и изгибной жесткостью балки  [c.197]

Основанная на этих гипотезах теория. тонкостенных стержней открытого сечения рассматривалась рядом исследователей, но законченная форма ей была придана В. 3. Власовым [24]. Деформации тонкостенных кривых стержней в отличие от прямых сопровождаются существенными искажениями формы их сечения. Задача о чистом изгибе стержней с круговой осью описывается почти такими же уравнениями, как осесимметричная деформация оболочек,вращения. Для стержней малой кривизны эти уравнения могут быть упрощены. В 45 рассмотрены числовые методы расчета, а для стержней, составленных из цилиндрических и плоских стенок, приведены аналитические решения.  [c.408]

Рассмотрим чистый изгиб тонкостенного стержня с круговой осью в плоскости начальной кривизны, причем предположим, что сечение стержня симметрично относительно плоскости кривизны (рис. 10.17). В этом случае деформации всех поперечных сечений стержня одинаковы, так же как и при осесимметричной деформации оболочки вращен"Ия (предполагается, что усилия, создающие моменты на торцах, распределены так же,, как и внутренние силы в любом поперечном сечении стержня). Однако эта задача отличается от рассмотренной в гл. 3. Там центральный угол d(p, занимаемый элементом оболочки, оставался неизменным, так как оболочки были замкнутыми по окружности. Здесь, в связи с изгибом, угол получает приращение ф, причем отношение  [c.429]

Положим, имеется участок бруса большой кривизны постоянного сечении, нагруженный по концам моментами 9) (рис. 174). Так же как и для прямого бруса ( 29), можно показать, что множество точек, образующих до изгиба поперечное сечение бруса, после изгиба также образует плоское сечение, но повернутое в пространстве. Иными сло 1ами, попереч 1ые сечения бруса большой кривизны при чистом изгибе остаются плоскими.  [c.161]

Пусть R есть порядок величины радиуса кривизны оболочки, совпадающей обычно с порядком величины ее размеров. Тогда тензор деформации растяжения, сопровождающего изгиб, — порядка соответствующий тензор напряжений E /R, а энергия деформации (отнесенная к единице площади), согласно (14,2), Eh tiRf. Энергия же чистого изгиба по-прежнему Eh% R. Мы видим, что отношение первой ко второй Rlh , т. е. очень велико. Подчеркнем, что это имеет место независимо от соотношения между величиной Z изгиба и толщиной h, в то время как при изгибе плоских пластинок растяжение начинало играть роль только при I h.  [c.80]

Для рассмотрения общего случая предположим, что балка имеет поперечное сечение в виде правильной трапеции (рис. 11.1.1,а). Рассматриваемый участок балки нагружен двумя равными противоположно направленными внешними моментами, действующими в продольной плоскости симметрии балки. Если на участке балки действуют равные, но противоположно направленные моменты, то он находится в состоянии чистого изгиба. Следовательно, кривизна балки на этом участке должна быть постоянной, т. е. К = 1/р = = onst.  [c.171]

Учитывая, что в правой части уравнения 11.1.2 все величины постоянные, отношение 1/р==к также величина постоянная, т. е. кривизна изогнутой части балки, находящейся в состоянии чистого изгиба, является onst. Возвращаясь к уравнению 11.1.1, нормальное напряжение при поперечном изгибе можно представить в виде  [c.173]

Здесь обнаруживается противоречие с изложенным выше утверждением, что при чистом изгибе кривизна постоянна k= /[s = = M/ / = onst) и балка изгибается по дуге окружности. Причина этого кроется в приближенности дифференциального уравнения упругой линии, которым мы пользуемся для вывода уравнения (10.72). Строго говоря, при чистом изгибе балка изгибается по дуге окружности, которая в пределах малых деформаций с весьма большой точностью может быть представлена квадратичной параболой.  [c.299]

Своеобразие напряженно-деформированного состояния кривых брусьев связано с тем, что, по определению, у таких брусьев высота h сравнима с радиусом кривизны осевой линии. Рассмотрим изгиб кривого бруса в плоскости Оуг (рис. 12.40), представляющей плоскость симметрии бруса. Ось Оу направим от центра кривизны бруса О, поместив начало отсчета в точке Oi на нейтральном слое О—0. Радиус кривизны линии О—О равен г. Примем гипотезу плоских сечений и рассмотрим поворот друг относительно друга двух близких сечений а—а и р—р, расстояние между которыми Asq по линии О—О связано с углом Аф соотношением Aso = гАф. При этом длина отрезка Aso по определению нейтрального слоя не изменяется при чистом изгибе. Длина отрезка ЬЬ As = (г + у) Аф при изгибе с изменением угла между сечениями аа и рр на величину бАф = б Аф + баАф изменяется и равна  [c.282]


Представляет интерес сравнить точное решение задачи о чистом изгибе кривого бруса с приближенным, приводимым в курсах Сопротивление материалов . Приближенное решение построено на основе гипотез о плоских сечениях и непадавливагшя волокон друг на друга (ог = 0). Допущение о том, что сечения после деформации остаются плоскими, подтверждается точным решением методами теория упругости. В случае чистого изгиба кривого бруса сечештя, плоские до деформации, остаются плоскими и после при-ложепия изгибающих моментов. Что же касается второго допущения, то точное решение задачи показывает, что волокна при изгибе кривого бруса взаимодействуют друг с другом в радиальном направлении. Напряжения о, увеличиваются по абсолютной величине от крайних волокон к середине и достигают максимального значения для волокон, расположенных несколько ближе к центру кривизны, чем нейтральный слой (рис. 5.5, б).  [c.101]

Подтверждается ли гипотеза о ненадавливаний волокон друг па друга при чистом изгибе бруса большой кривизны  [c.118]

Таким образом, в задаче о чистом изгибе бруса в упруго-пластической области, приняв диаграмму о-в без упрочнения, мы для каждого значения М < М < можем определить, пользуясь формулами (10.51) или (10.52), границы между упругой и пластической областями (со), а также величины радиуса кривизны оси бруса по формуле (10.5.3) и максимальной деформации в сечении по формуле (10.54). При чистом изгибе кривизна 1/р — величина постоянная. Приняв для 1/р приблин енное выран<ение 1/р = легко опреде-  [c.296]

Поскольку интеграл в (12.8)4— статический момент площади поперечного сечения относительно оси х, совпадающей со следом нейтрального слоя на плоскости поперечного сечения стержня, равенство (12.8)4 возможно лишь в случае, если ось х проходит через центр тяжести поперечного сечения. Выше было принято, что ось г есть проекция оси стержня на нейтральный слой. Сейчас получили уточнение — ось стержня лежит в нейтральном слое и, следовательно, совпадает со своей проекцией — осью г. Поскольку интеграл в (12.8)2 — центробежный момент инерции площади поперечного сечения, выполнение (12.8)2 возможно, если оси х и у являются главными осями инерции площади поперечного сечения. Выше было сделано предположение о совпадении плоскости действия внешних моментов, вызывающих чистый изгиб бруса, с плоскостью изгиба, в которой лежит изогнутая ось стержня, а следовательно, и центр п радиус кривизны оси. Теперь получено условие (12.8)2, при котором такое совпадение возможно. Только в том случае, если плоскость действия внешних моментов, вызывающих чистый изгиб, содержит в себе одну из главных осей инерции площади всех поперечных сечений стержня, эта плоскость совпадает с плоскостью изгиба другая главная ось инерции площади поперечного сечения сливается с нейтральной линией. В отличие от обсужденного выше существует и так называемый косой чистый изгиб, при котором плоскость действия внешних моментов и плоскость изгиба не совпадают (имеется в виду, что обе плоскости содержат ось стержня). Косой изгиб рассмотрен в главе XIII как частный случай более сложной деформации стержня — пространственного поперечного изгиба.  [c.107]


Смотреть страницы где упоминается термин Кривизна чистого изгиба : [c.225]    [c.266]    [c.432]    [c.81]    [c.263]    [c.216]    [c.429]    [c.622]    [c.100]    [c.187]   
Пластинки и оболочки (1966) -- [ c.61 ]



ПОИСК



Брусья витые — Расч кривые плоские большой кривизны — Внутренние силы 127 — Напряжения при чистом изгибе

Изгиб чистый

Кривизна

Кривизна кривизна

Кривизна оси балки при чистом изгибе

Кривизна оси балки при чистом изгибе бруса

Практические методы вычисления нормальных напряжений при чистом изгибе стержней большой кривизны

Соотношения между изгибающими моментами и кривизнами при чистом изгибе пластинки

Чистый Кривизна оси



© 2025 Mash-xxl.info Реклама на сайте