Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали Испытания на хрупкое разрушение

B. Испытания на хрупкое разрушение легированных сталей 113  [c.69]

Принято считать, что хрупкое разрушение не является проблемой для аустенитных сталей. Однако хрупкое разрушение иногда происходит, особенно в случае высокопрочных сплавов. Поэтому необходимо рассмотреть методику испытаний на хрупкое разрушение.  [c.119]

Когда изделие, которое можно представить в виде компактного образца для изучения ударной вязкости, подвергается действию растягивающих напряжений, может произойти хрупкое разрушение его в случае, если интенсивность напряжений достигает определенной величины, характерной для данного материала, а поверхность разрушения будет достаточно плоской. Интенсивность напряжений, при которой происходит разрущение образца, определяется напряжением а, приходящимся на единицу площади, и длиной трещины а, выражается в единицах fMH/M /2] и известна под названием вязкости разрушения К с)- Если уменьшить размеры образца или увеличить температуру его, материал образца будет переходить в состояние текучести, начиная от конца трещины, до того как произойдет его хрупкое разрушение, и на другой стороне появятся резко выраженные полосы сдвига. Для изучения вязкости разрушения ударно-вязких высококачественных сталей используют очень крупные образцы, но их довольно трудно получить и создать в них напряжения, достаточные для того, чтобы перенести полученные результаты на узлы реальных размеров, например, роторы турбин, сосуды высокого давления или паровой цилиндр. Некоторое приближение может быть сделано при нагружении образцов, маленьких для хрупкого разрушения, но достаточных для измерения скорости распространения трещины. Поэтому во многих случаях результаты испытаний на вязкость разрушения могут быть экстраполированы, но так как для большинства рассчитанных размеров трещин разрушение будет носить хрупкий характер, они могут быть использованы для оценки с достаточной степенью точности.  [c.44]


Испытания на вязкость разрушения. Для оценки стойкости сталей против хрупкого разрушения определяют вязкость разрушения или коэффициент интенсивности напряжения в условиях плоской деформации и мгновенного роста трещины Kiz (см. раздел Методы механических испытаний ).  [c.51]

В ИркутскНИИхиммаше в течение длительного времени изучались температурные зависимости ударной вязкости, полученные при испытаниях образцов с и и V-образными надрезами для сталей разных марок, как в состоянии поставки, так и после их длительной эксплуатации (на основании испытаний материала контрольных вырезок из стенок диагностируемого оборудования). Результаты исследований свидетельствуют, что изменение формы надреза может существенным образом изменить представление о хладостойкости и способности сталей к сопротивлению хрупкому разрушению.  [c.74]

Для аустенитных сталей можно применить любой из методов испытания на хрупкую прочность термообработанных легированных сталей, которые описаны выше. В этом случае можно использовать также концепции механики хрупкого разрушения при условии, что они приняты за основу как при испытаниях, "так и при проектировании.  [c.119]

Основная серия испытаний выполнена на цилиндрических образцах с кольцевым надрезом (рис. 2.20) следующих размеров длина рабочей части 35 мм D = 9,5 мм d = 4,75 мм R = = 0,5 мм а = 45°. Деформированное состояние стали для таких испытаний получали растяжением при комнатной температуре гладких образцов диаметром 10 мм до ео=-6 % Затем из этих образцов вырезали образцы с надрезом (рис. 2.20). Образцы полировали электролитическим методом во избежание инициирования хрупкого разрушения от поверхностных дефектов. Деформирование образцов с надрезом осуществляли растяжением при 7 = —196, —140, —100 и —60 С для стали в исходном состоянии и при Т = —196, —100, —60°С для стали в деформированном состоянии. Определяли максимальную нагрузку Ртах и нагрузку Pf в момент разрыва образца. Диаметр образца до и после испытаний измеряли на микроскопе УИМ-23.  [c.101]

Испытания на ударную вязкость позволяют выявить склонность к хладноломкости раньше, чем обычные методы испытания. Если при испытании гладких образцов на растяжение переход от вязкого разрушения к хрупкому наблюдается при очень низких температурах от —100 до —200°С, то в испытаниях на ударную вязкость этот переход наблюдается при более высоких температурах. Для малоуглеродистой стали в зависимости от обработки стали переход происходит в интервале от —20 до +40°С.  [c.72]


По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Как уже упоминалось, для испытания на сжатие используют короткие цилиндрические образцы, располагаемые между параллельными плитами. Для малоуглеродистой стали диаграмма сжатия образца имеет вид кривой, показанной на рис. 1.43. Здесь, как и у диаграммы растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, однако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается сам образец вследствие трения на торцах принимает бочкообразную форму (рис. 1.44). Довести образец пластичного материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск (см. рис. 1.44), и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может (см. табл. 1.1).  [c.87]

Полосы деформации представляют собой последовательные положения внутризеренного фронта трещины после каждого цикла нагружения. По расстоянию между полосами можно судить о скорости распространения фронта трещины в тех случаях, когда они имеют правильное расположение (в железе, низкоуглеродистой стали, алюминиевых сплавах). Однако рассчитанная по расстоянию между полосами скорость распространения трещины не на всех стадиях роста трещин вполне соответствует скорости, полученной при усталостных испытаниях. Это связано с тем, что на каждый цикл фронт трещины продвигается не на одинаковое расстояние по всей длине. Наряду с усталостным происходит хрупкое разрушение с образованием плоских гладких участков и перлитных сколов, что приводит к быстрому локальному продвижению фронта трещины. Кроме того, на стадии быстрого роста возможно развитие боковых трещин.  [c.49]

Таким образом, состав и механические свойства стали определяют ее пригодность работы в условиях ударного изнашивания. При низких энергиях удара, износ сталей разного состава различается незначительно. С увеличением энергии удара проявляется не только различие износа, но и возникает возможность испытаний этих сталей без разрушения. Две принципиально различные причины вызывают ограничение энергии удара — интенсивная пластическая деформация для вязких структур и хрупкое разрушение для сталей, закаленных на высокую твердость.  [c.92]

Изменение скорости развития трещины не всегда резко отражается на характере разрушения. Например, в образцах из высокопрочной стали, отпущенной при 205°С, при испытании--в сухой атмосфере и в атмосфере повышенной влажности наблюдалось внутризеренное хрупкое разрушение, в то время как. скорость распространения усталостной трещины во втором случае увеличилась на 50%. В образцах из той же стали, отпущен ной при 425°С и имеющей при нагружении в сухой атмосфере. пластичное внутризеренное разрушение, присутствие паров воды изменяет характер разрушения на хрупкий межзеренный, хотя скорость развития трещины увеличивается при этом лишь на 10% [143].  [c.131]

От соотношения величии составляющих ударной вязкости зависит характер разрушения. Высокие значения полной ударной вязкости не исключают возможности хрупкого разрушения в том случае, если работа распространения близка нулю. Известны случаи хрупкого разрушения труб, изготовленных из сталей с йн=10 кгс-м/см . Испытания их материала на ударную вязкость с разделением на составляющие показали, что а на 80—90% состоит из и только 20—10% приходится на [36].  [c.35]

Склонность сталей к хрупкому разрушению была оценена по результатам испытаний на ударную вязкость образцов типа 1 по ГОСТу 9454—60 с разделением величины ударной вязкости на работы зарождения и распространения трещины. Если принимать за критерий перехода материала в хрупкое состояние работу распространения трещины ар = 2 кгс- м/ м , то результаты (рис. 14) свидетельствуют о том, что термическое упрочнение стали Ст. 3 вне зависимости от степени ее раскисленности приводит к значительному повышению прочностных и хладостойких свойств. Особенно существенно  [c.44]


Г Сварные магистральные нефтегазопроводы высокого давления диаметром до 820 мм при толщине стенки 6—9 н 9—15 мм При испытании на растяжение в области температур до — 70 С не снижает пластические свойства и. следовательно, не проявляет склонности к хрупкому разрушению. При —196 С пластичность стали значительно снижается  [c.291]

Испытания на ударное кручение редко применяются, хотя ими могут быть обнаружены механические свойства, не проявляющиеся при других видах испытаний. Испытания на ударное кручение могут иметь значение при испытании твёрдых инструментальных сталей, а также конструкционных, предназначенных для деталей, работающих на кручение. При испытании на кручение хрупкому разрушению соответствует излом по винтовой линии (по направлению наибольших растягивающих напряжений). При вязком разрушении излом получается перпендикулярно оси Образца (по направлению наибольших касательных напряжений).  [c.42]

Испытания на кручение часто дают более наглядную картину изменения состояния металла при деформировании, чем испытания на растяжение. При кручении форма образца почти не изменяется, что позволяет достаточно точно определять деформации и соответствующие им напряжения до момента разрушения образца включительно, тогда как при испытании на растяжение это становится невозможным после образования шейки. Хрупкие при растяжении материалы (закалённая сталь) дают при кручении значительную деформацию. По виду излома скрученных образцов легко установить характер разрушения излом, перпендикулярный оси образца, характеризует разрушение от среза, излом по винтовой линии — разрушение от отрыва. Так как при кручении шейка не образуется, то кривая кручения не имеет нисходящего участка, и крутящий момент М непрерывно возрастает вплоть до разрушения образца (фиг. 102), что упрощает определение напряжений при кручении. Неравномерность распределения напряжений при кручении не препятствует их учёту.  [c.45]

Особое внимание следует уделить испытаниям образцов Шарпи с усталостными треш инами с целью определения соответствия получаемых результатов данным испытаний на вязкость разрушения. Возможность использования внешнего вида излома как характеристики вязкого или хрупкого поведения материала обсуждалась различными конструкторскими группами, но не была включена в технические условия из-за трудности расшифрования внешнего вида поверхности излома. Другие исследователи, как, например, Пагано и Макхью (1944 г.), пытались заменить испытания по Шарпи испытаниями на удар при определении поведения броневой стали.  [c.334]

При реализации механизма замедленного разрушения поверхность разрушения приобретает межкристаллитное строение. Отчетливо выявляется характерная огранка поверхности разрушения (рис. 5.68), возникающая при распространении хрупких трещин по границам кристаллитов. Часто видны трещины уходящие в глубь металла. Такая же картина разрушения выявлена при изучении влияния водорода и приложенного напряжения на высокопрочную (а 2 = 1200 МПа) сталь 38ХНЗМФА в закаленно-отпущенном состоянии [187]. Испытания на замедленное разрушение проводили при комнатной температуре, нагружая стандартные призматические с острым надрезом (угол раскрытия 45°, радиус основания надреза р = 0,22 мм, наведенная усталостная трещина) образцы с постоянно действующим изгибающим моментом (по схеме чистого изгиба). Источником водорода служил  [c.297]

Значение ударной ВЯЗКОСТИ на образцах с полукруглым надрезом при —90° С превосходит 3 кГ м1см , а условный порог по критерию 50% вязкой составляющей в изломе находится в области 0°С. Нижняя граница критического интервала хрупкости стали 16Г2АФ лежит при (—90) (—110° С), что значительно ниже, чем у обычных низколегиро ванных сталей. После деформационного старения условные пороги хладноломкости смещаются в сторону положительных температур примерно на 40—70 град, что не больше, чем у обычных низколегированных сталей. Высокое сопротивление хрупкому разрушению стали 16Г2АФ подтверждается испытаниями на растяжение крупномерных образцов с надреза-  [c.148]

Схема перехода из вязкого в хрупкое состояние, предложенная Е. М. Шевандиным (см. рис. 7.1, г), состоит из кривых истинных напряжений 5 = /(ijj), полученных при температуре испытания от -Ь20 до —196° С iAa для сталей, склонных к хрупкому разрушению. Схема похожа на схему Н. Н. Давиденко-  [c.256]

Рассмотрим прежде всего поверхности излома образцов из стали с очень низким содержанием углерода, разрушившихся под действием статической нагрузки. Характер поверхности излома образцов, испытанных при очень низких температурах, указывает на хрупкое разрушение. Поверхность излома проходит по поверхностям спайности с )еррита, определяемым кристаллографическим путем и не ориентированным определенным образом по отношению к направлениям главных напряжений.  [c.12]

Испытание на растяжение таких твердозакаленных сталей HR >5S) дает меньшее значение прочности, чем здесь указано (из-за преждевременного хрупкого разрушения).  [c.365]

Расчетное исследование НДС образцов из стали 15Х2МФА (рис. 1.4), подвергнутых растяжению в области низких температур, было проведено с целью анализа параметров, характеризующих сопротивление хрупкому разрушению материала [131]. Подробно результаты расчета и эксперимента будут изложены в подразделе 2.1.4. В настоящем разделе мы хотим продемонстрировать работоспособность метода решения упругопластических задач в части учета геометрической нелинейности. Дело в том, что перед разрушением испытанных образцов при Т = —100 и —10°С происходила потеря пластической устойчивости (зависимость нагрузки от перемещений имела максимум). Очевидно, что расчетным путем предсказать потерю несущей способности конструкции можно, решая упругопластическую задачу только в геометрически нелинейной постановке. При численном моделировании нагружение образцов осуществляли перемещением захватного сечения образца от этапа к этапу задавалось малое приращение перемещений [131]. При этом анализировали нагрузку, действующую на образец. Механические свойства стали 15Х2МФА, используемые в расчете, представлены в подразделе 2.1.4. На рис. 1.4 представлены зависимости нагрузки от перемещений захватной части образца. Видно, что соответствие экспериментальных данных с результатами расчета хорошее. Наибольшее отличие расчетной максимальной нагрузки от экспериментальной составляет приблизительно всего 3 % различие в среднеинтегральной деформации при разрушении образца е/ = —1п (1—i j) (i ) — перечное сужение нет-  [c.32]


Рассмотрим возможность прогнозирования зависимости S (x) по уравнению (2.22), исходя из следующей процедуры. Коэффициенты с с и Лд в (2.22) будем определять на основании.экспериментальных данных по статическому разрыву одноосных образцов в исходном состоянии (первая серия испытаний), а сравнение аналитической зависимости S (x) проведем с экспериментальными данными, полученными в третьей серии испытаний (циклический наклеп с последующим растяжением в области низких температур). На рис. 2.12 выполнено такое сравнение зависимости 5с(и), рассчитанной по уравнению (2.22) ( i = 2,27. 10- МПа-2 С2 = 4,03- 10 MHa Лд=1,87) с экспериментальными значениями 5с для стали 15Х2НМФА. Условия предварительного циклического деформирования и характеристики последующего хрупкого разрушения образцов приведены в табл. 2.1 и 2.2.  [c.81]

Изломы, фрактуры которых представлены на рис. 2,13, получены при испытании цилиндрических образцов с кольцевым надрезом (методики испытаний и расчета НДС таких образцов изложены ниже). Для стали 15Х2МФА значительная пластичность при хрупком разрушении цилиндрических гладких образцов сохраняется до очень низких температур (см. рис. 2.3). Поэтому только при достаточной жесткости напряженного состоя-  [c.83]

С увеличением концентрации напряжений более отчетливо проявляется влияние напрягаемых объемов и температуры на переход от вязкого состояния к хрупкому. Поэтому для определения условий перехода от вязкого к квазихрупкому или хрупкому разрушению широко используют температурные зависимости характеристик прочности и пластичности. В качестве примера на рис. 1.10 приведены результаты испытаний для малоуглеродистой стали 22К при растяжении образцов с площадью сечения f=lOOO мм . При испытаниях образцов с острыми надрезами регистрировались разрушающее напряжение Ск, сужение площади поперечного сечения ij) и максимальная деформация бтах в зоне концентрации напряжений после разрушения, измеренной методом сеток с шагом 0,1 мм. Кроме указанных характеристик на диаграмме рис. 1.10 нанесены величина Fb — доля вязкой ягтp и.члома (как хаоареристика степени  [c.17]

Границы перехода могут быть установлены также и по фрактогра-фическим признакам. Впервые этот метод использовал А. М. Дра-гомиров [401] при определении границ хрупко-пластичного перехода в сталях. В настоящее время применяется в ряде стран в качестве государственного стандарта. Суть этого метода состоит в смене механизма разрушения при изменении температуры, обычно при испытаниях на ударную вязкость. Нижняя граница Г определяется как температура, при которой в изломе кроме скола отмечаются первые признаки пластичного излома. Верхняя граница Т определяется как температура, при которой в изломе исчезают признаки разрушения сколом.  [c.205]

Ступеньки, образующие ручьистый узор, могут быть резко очерчены (см. рис. 17, 18,а), линии ручейкового узора расположены под разными углами. В этом случае разрушение более хрупкое, чем при формировании ступенек с плавным очертанием, имеющих извилистую траекторию. Так в стали ЗОХЗВА при температуре испытания на чувствительность к трещине —70°С на поверхности фасеток наблюдался первый вид ступенек (работа разрушения составляла ату=0,06 МДж/м ), а в стали 38ХМЮА (рис. 20) наблюдался второй вид ступенек (ату = = 0,19 МДж/м2).  [c.41]

В большинстве случаев зона излома, соответствующая стадии медленного распространения треш,ины, имеет тем более хрупкий характер, чем больше долговечность образца. Например, образцы стали Н17К12М5Т, изготовленные из металла разных плавок, но с практически одинаковыми механическими свойствами при кратковременных испытаниях, показали разброс по долговечности при испытаниях на КПН при а =1,50 ГН/м2 от 2,5 до 8 сут. В образцах с большей долговечностью в зоне КПН наблюдалось хрупкое межзеренное разрушение, в зоне долома — пластичное, внутризеренное в образцах с малой долговечностью разрушение в зоне КПН менее хрупкое, а в зоне долома менее пластичное (рис. 52). При кадмировании той же стали долговечность снизилась от 4 сут (без кадмирования) до 5—10 ч разрушение в зоне КПН было межзеренным, но менее хрупким, чем без кадмирования. Охрупчивания в зоне долома при КПН с увеличением долговечности, как правило, не наблюдается, в противоположность замедленному разрушению при водородной хрупкости.  [c.79]

На присутствие усталостных микрополосок могут оказывать влияние условия испытания. Так, в отжиленном армко-х елезе, испытанном при симметричном циклическом кручении, разрушение проходило путем расслоения по плоскостям скольжения [24], Усталостных микрополосок на поверхности излома при низком и высоком уровне напряжений может не быть. Так, иногда при низком уровне нагрузок наблюдался рельеф в виде фасеток отрыва, характерных для хрупкого разрушения [37, 120, 138]. В ряде случаев при низком уровне нагружения усталостные микрополоски выявляются с большим трудом. На оптическом микроскопе при этом могут наблюдаться плато с небольшой рябизной (см. рис. 75,6), а на электроином-плато с очень тонкими неглубокими полосками. Таким образом, в случае отсутствия микрополосок признаком усталостного разрушения может явиться наличие плато, создающих волокнистость рельефа (см. рис. 73,а), что особенно характерно для алюминиевых сплавов, или сглаженного слегка волокнистого рельефа для высокопрочных сталей (рис. 86).  [c.113]

В табл. 6 приведены некоторые результаты испытаний на долговечность металла спирально-шовных труб из стали 17Г2СФ при малоцикловом нагружении. Сравнивается металл, вырезанный вдоль и поперек прокатки. Отмечается резкая анизотропия долговечности по этим направлениям у основного металла. Долговечность металла поперек прокатки в три раза ниже, чем вдоль. Наблюдается различие и в изломах. При испытании вдоль прокатки длительное время происходит развитие усталостной трещины (примерно половина числа циклов до разрушения) и затем наступает механический дорыв. При испытании поперек прокатки хрупкое разрушение металла наступает через несколько циклов после обнаружения усталостной трещины. Поперечный сварной шов (геометрический  [c.231]

Однако следует иметь в виду, что это относится к обычным жаропрочным сталям и сплавам на железной, никелевой или кобальтовой основе, критический интервал хрупкости которых располагается в области отрицательных температур. Испытания на термоусталость в температурном диапазоне 20ч 1200°С некоторых сплавов на основе хрома, у которых температура хрупкого перехода сотавляла 30—50° С, показали, что все разрушения происходят при нижней температуре цикла, когда пластичность материала невелика. Вместе с тем при верхней температуре цикла эти сплавы имеют высокую пластичность. Для таких материалов деформационный критерий термоусталостной прочности должен учитывать минимальное значение предельной пластичности.  [c.126]

Оценка сопротивления хрупкому разрушению шпилечной стали 38ХНЗМФА приведена в работе [81. Испытания проведены на  [c.388]

В связи с этим оценка склонности реакторных сталей к хрупкому разрушению по результатам испытаний стандартных образцов на ударную вязкость принималась необходимой, но недостаточной для предотвращения опасности хрупкого разрушения. В конце 50-х-начале 60-х годов в СССР, США и Англии были проведены испыгания крупногабаритных образцов толщиной от 50 до 250 мм и шириной от 200 до 1200 мм [2, 7, 14, 16]. Эти образцы имели острые надрезы типа дефектов и трещин, сварные швы часть образцов подвергалась предварительному деформационному старению. Для испытаний таких образцов были использованы уникальные установки с предельными усилиями от 1500 до 8000 тс (15-80 МН), По результатам проведенных испьпаний была определена область критических состояний, характеризуемых резким уменьшением прочности и пластичности реакторных сталей как для стадаи возникновения, так и для стадии развития хрупких трещин. В последнем случае при температурах ниже критических разрушающие напряжения оказывались весьма низкими (0,05-0,15 от предела текучести). При наличии высоких остаточных напряжений от сварки разрушения крупногабаритных образцов с дефектами также происходили при низких номинальных напряжениях от нагрузки. Этими оп<,пными данными была обоснована необходимость расчета прочности атомных реакторов [5] по критическим температурам хрупкости и разрушающим напряжениям кр хрупких состояниях с введением запасов [ДГ] и кр соответственно, а также важность проведения термической обработки для снятия остаточных напряжений.  [c.39]


Как в нашей стране, так и за рубежом, для определения сопротивления трубного металла распространению хрупких разрушений применяется известная методика DWTT — испытание на разрыв падающим грузом. Стандартные образцы (рис. 1) имеют надрез, который наносится вдавливанием с помощью соответствующего пуансона с радиусом вершины менее 0,025 мм. Такой радиус надреза совместно с наклепом, вызванным прессованием, обеспечивают получение начального хрупкого разрушения и его развитие в зоне вершины дефекта с большой скоростью при незначительных энергетических затратах. Эта деталь очень важна. В последнее время на некоторых трубных заводах и даже в научно-исследовательских институтах вместо прессованного надреза стали делать обычный механический пропил. В этом случае теряется основная идея таких испытаний, поскольку их результаты существенно зависят как от способа изготовления надреза, так и радиуса его вершины. Так, на стали 09Г2СФ t = 20 мм) фрезерованный надрез с таким же радиусом закругления как и у прессованного (0,025 мм) сдвигает переходную температуру на 12 °С в область более низких температур (рис. 1). Увеличение радиуса приводит к еще большему снижению критической температуры. Только при наличии прессованного надреза вид излома при дальнейшем движении трещины в образцах определяется, главным образом, вязкостью материала и, как следствие этого, отражает характер разрушения натурных газопроводов. Исходя из этого, Институтом Баттела (США) были предложены такие образцы для определения температуры, выше которой невозможно распространение хрупкого разрушения в реальном газопроводе. Установлено, что эта температура соответствует 80 %-ной вязкой составляющей в изломе образца с прессованным надрезом. Натурные испытания, проведенные в нашей стране, также подтвердили это положение.  [c.25]

Известно, что с уменьшением толщины металла в области вер шины движущейся трещины снижается степень стеснения пластических деформаций. Вследствие этого обеспечивается переход от хрупкого разрушения к вязкому При этом существенно повышается сопротивление материала распространению разрушения. Об этом, в частности, можно судить по результатам испытаний одной и той же стали, отличающейся своей толщиной. Общая толщина испытываемого пакета была постоянной. На рис. 3, а показано изменение переходных температур (отвечающих 80 %-ной вязкой составляющей) в зависимости от толщин пластин, которые изготавливались из листа толщиной 24 мм путем его сострагивания, на рис. 3, б — аналогичная зависимость, полученная по результатам испытания одной и той же стали в прокате толщиной 24, 16, 12, 8 и 4 мм. Разница между кри-  [c.27]

Для того чтобы проверить действительно ли многослойные трубы или обечайки из тонколистовой стали 09Г2СФ, не содержащей дефицитных легирующих элементов, полностью исключают хрупкие разрушения магистральных газопроводов, на севере Тюменской области были испытаны пневматически при давлении 7,5 МПа две трубные секции диаметром 1420 мм. Первая секция (рис. 7) общей длиной 210 м состояла из 18 полноразмерных труб (сталь 17Г2АФ) с монолитной стенкой и ряда многослойных вставок (на рисунке заштрихованные участки) длиной от 1,3 м до 5,2 м, которые располагались за разгонными трубами 1 vi2. Вторая секция (рис. 8) длиной 150 м включала две многослойные трубы 3 и 5, одну разгонную 4 с монолитной стенкой (сталь 14Г2АФ-У) и концевые участки, сваренные из труб зарубежной поставки. Условия испытаний были жесткими. Магистральные трещины инициировались с помощью ВБ и разгонялись в трубе с монолитной стенкой, обладающей низким  [c.28]

В условиях работы при постоянной температуре композиция аустенитнога металла шва (на железной или никелевой основе) не оказывает влияния на характер разрушения разнородных сварных соединений. В то же время испытания последних при циклически изменяющихся температурах показывают преимущества электродов на никелевой основе с точки зрения уменьшения вероятности хрупких разрушений в зоне сплавления. Поэтому для сварных соединений из разнородных сталей, имеющих в процессе эксплуатации большое количество пусков и остановок и работающих при температуре выше 400—550°, наиболее целесообразным является применение аустенитных электродов на никелевой основе.  [c.50]


Смотреть страницы где упоминается термин Стали Испытания на хрупкое разрушение : [c.219]    [c.70]    [c.129]    [c.96]    [c.76]    [c.32]    [c.36]    [c.214]    [c.15]    [c.121]    [c.287]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.119 ]



ПОИСК



Испытание без разрушения

Испытания па разрушение стали

Разрушение хрупкое

Стали аустенитные — Испытания на хрупкость 119—120 — Сопротивление хрупкому разрушени



© 2025 Mash-xxl.info Реклама на сайте