Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристалл положительный

Энергия связи (или энергия сцепления) кристалла представляет собой энергию, которая необходима для разделения тела на составные части. В зависимости от типа твердого тела составными частями могут быть молекулы и атомы в молекулярных кристаллах, атомы в ковалентных и металлических кристаллах, положительно и отрицательно заряженные ионы в ионных кристаллах.  [c.63]


Оптическая ось О О" параллельна преломляющей грани кристалла (рис. 17.21, в). Обыкновенный и необыкновенный лучи распространяются в кристалле, не преломляясь, в одном и том же направлении. Однако волновые фронты обыкновенной и необыкновенной волн не совпадают. Если кристалл положительный, то фронт необыкновенной волны отстанет от фронта обыкновенной волны. Если кристалл отрицательный, то картина будет обратная. В результате в обоих случаях между обыкновенной и необыкновенной волнами возникает определенная разность хода.  [c.49]

Очевидно, что поскольку изменения, вызванные напряжением, малы по сравнению с естественными скоростями волн, С всегда будет наименьшей скоростью, если конечно кристалл положительный.  [c.252]

ГИИ при возвращении активирующей примеси в кристалл, положительный заряд которой уменьшается вследствие присоединения одного электрона.  [c.244]

Знак удлинения кристаллов положительный, если Ng (направление наибольшей оси индикатрисы) совпадает с направлением удлинения или образует с ним угол меньше 45° если это положение занято Кр, то удлинение отрицательное, а если—Кт, то знак удлинения положительный или отрицательный (+). В случае если удлинение параллельно плоскости (т. е. кристалл пластинчат), то знак удлинения положителен, если Кр перпендикулярно к плоскости или образует с ней угол менее 45 он отрицателен, если это положение занято осью Ng, и имеет знак плюс или минус ( ), если в этом положении находится Кт.  [c.10]

Помещая в оптическую систему установки (см. рис. 29.1) клин, вырезанный из кристалла так, чтобы его оптическая ось была бы парал-можно по расстоянию между максимумами найти угол клина. В случае, если наблюдение ведется в белом свете, то угол клина можно рассчитать по характеру окраски. Для определения других характеристик кристаллов измерения проводят при наблюдении интерференционных картин поляризованных лучей в сходящихся пучках. Остановимся на конкретных приемах, позволяющих исследовать некоторые оптические характеристики кристалла, используя оптическую схему, изображенную на рис. 29.9. Наблюдение коноскопических фигур дает возможность оценить характер кристалла (одноосный или двуосный), провести технологический контроль обработки кристалла, определить знак кристалла (положительный или отрицательный) и знак вращения плоскости поляризации (если кристалл оптически активен).  [c.248]

Эта глава будет посвящена изучению взаимодействия между электронами в металлах. Мы воспользуемся простой моделью металла, в которой периодически распределенный заряд ионов заменен равномерно размазанным по всему кристаллу положительным компенсирующим зарядом. Такая модель газа взаимодействующих электронов лучше всего описывает простые металлы (например, щелочные), в которых электроны ведут себя почти как свободные, т. е. периодический потенциал может рассматриваться как малое возмущение, лишь слабо искажающее движение электронов. Возможно, что эта модель дает также неплохое приближение и для всех металлов, исключая переходные и редкоземельные в последних двух случаях периодическое поле играет суще-ственную роль.  [c.82]


Ионная (или гетерополярная) связь возникает у разнородных атомов, когда какой-либо из них отдает с внешней оболочки, а другой принимает на свою внешнюю оболочку один или несколько электронов Образующиеся при этом положительно и отрицательно заряженные ионы с завершенными внешними оболочками благодаря электрическим силам взаимно притягиваются Ионная Связь характерна только для ионных кристаллов, состоящих из разных атомов элементы не обладают ионной связью  [c.5]

Иначе происходит с трехвалентным атомом примеси В в решетке 81. Поскольку на внешней оболочке атома В имеются лишь три валентных электрона, то не хватает одного электрона для заполнения четырех валентных связей с четырьмя ближайшими атомами. Свободная связь может быть заполнена электроном, перешедшим из какой-либо друг ой связи, а эта связь в свою очередь заполнится электронами следующей связи и т. д. Положительная дырка (незаполненная связь) перемещается по кристаллу от атома к атому (при движении электрона в противоположном направлении). При заполнении электроном недостающей ва-  [c.388]

Если Vx = Vy> v , то эллипсоид вращения (лучевая поверхность необыкновенного луча) расположен внутри сферы (рис. 10.10) и оптическая ось совпадает с осью z. Такой кристалл (например, кварц) называется положительным (п = Пу По <Пг = п ). Если же Vx = Vy а Уг, то сфера расположена внутри эллипсоида вращения (рис. 10.11) и такой кристалл (например, исландский шпат) называется отрицательным (ло > Пе).  [c.259]

Случай 1. Оптическая ось положительного кристалла лежит в плоскости падения под косым углом к преломляющей грани кристалла (рис. 10.13). Параллельный пучок света падает под углом к поверхности кристалла. Очевидно, что за время, в течение которого правый край В фронта волны А В достигает точки D на поверхности кристалла, вокруг каждой из точек на поверхности кристалла между А н D возникают две лучевые поверхности — сферическая и эллипсоидальная. Эти две поверхности соприкасаются друг с другом вдоль оптической оси. Из-за положительности кристалла эллипсоид будет вписан в сферу, т. е. все точки эллипсоида будут расположены внутри сферической поверхности. Для  [c.262]

Случай 2. Оптическая ось О О расположена под углом к преломляющей грани. Направим параллельный пучок света перпендикулярно поверхности положительного кристалла (рис. 10.14).  [c.262]

Случай 3. Оптическая ось О О положительного кристалла параллельна преломляющей грани и плоскости падения. Луч света падает нормально к поверхности кристалла (рис. 10.15). В этом случае обыкновенный и необыкновенный лучи распространяются, не преломившись, в направлении падения, но с разными скоростями (Уо > Vg). Для отрицательного кристалла получится тот же результат с той лишь разницей, что Vg < Ve. Если бы в данном случае луч падал под некоторым углом, отличным от нуля.  [c.263]

Поскольку положительные ионы (или дырки в кристалле) образованы в результате отрыва, т п = N w поэтому  [c.371]

Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного  [c.154]

В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Такой тип проводимости называется собственной проводимостью полупроводника.  [c.155]

Закон электролиза. Вещества, растворы которых проводят электрический ток, называются электролитами. Вода и кристаллы хлорида меди практически не проводят электрический ток. Раствор хлорида меди в воде является хорошим проводником. При прохождении электрического тока через водный раствор хлорида меди у положительного электрода, называемого анодом, выделяется газообразный хлор. На отрицательном электроде, называемом катодом, выделяется медь.  [c.163]

Его теория базируется на предположении о наличии у волны в кристалле двух волновых поверхностей. Скорость обыкновенной волны Ua "= с/па одинакова во всех направлениях (ей должна соответствовать сферическая волновая поверхность). Скорость необыкновенной волны и = с/п , зависит от направления, ее распространения. Она совпадает по значению с в направлении оптической оси кристалла и больше всего отличается от и в направлении, перпендикулярном оптической оси. Волновая поверхность необыкновенной волны для одноосного кристал.аа имеет вид эллипсоида вращения, который в направлении оптической оси должен касаться сферической волновой поверхности обыкновенной волны. Для отрицательного кристалла п , > п,, следовательно, Uo < Uf,, т.е. шар вписан в эллипсоид вращения. Для положительного кристалла и и волновая поверхность обыкновенной волны (шар) охватывает волновую поверхность необыкновенной волны (эллипсоид вращения). На рис. 3.18 представлены оба этих случая.  [c.131]


Волновые поверхности в отрицательном (а) (П(, > Лр) и в положительном (6) (П(, > rig) кристаллах  [c.132]

Найти условия положительности упругой энергии кубического кристалла.  [c.58]

Таким образом, в компенсаторе из положительного кристалла (Пе > По) свет, проходящий по линии, где 6-1 > 2, приобретает  [c.397]

В случае аддитивно окрашенных кристаллов иодистого калия получаются аналогичные результаты с той лишь разницей, что процессы образования при низкой температуре а- и f -полос под действием F-света обратимы. В фотохимически окрашенных кристаллах должны быть положительные дырки, которые вследствие рекомбинации с электронами из f-центров вызывают необратимое обесцвечивание. Но в аддитивно окрашенных кристаллах положительных дырок не имеется и поэтому процессы фотохимической трансформации полос обратимы.  [c.39]

В природе имеются две разновидности кристаллов — положительные и отрицательные. Для первых и поэтому на рис. 25.3, а эллипс вписывается в круг. Для вторых < ио, и в этом случае, наоборот, круг вписывается в эллипс (рис. 25.3, б). Положительным кристаллом являатся, например, кварц, для которого = 1,654 По 1,545 и, соответственно, сила двупреломления —  [c.200]

Элемент ведет себя как кристаллическая пластинка с плоско-параллельньшн гранями, главные направления которой ориентированы вдоль направления Ог электрического поля (т. е. по нормали к пластинкам конденсатора) и вдоль направления Оу, перпендикулярного Ог. Так как кристалл — положительный одноосный, то Пе > По. Направление необыкновенного колебания Ог является запаздывающим.  [c.143]

Пироэлектрические приемники излучения — приборы, в основу работы которых положен пироэлектрический эффект кристаллов. Его сущность заключается в изменении поляризации пироактнвного кристалла в процессе изменения температуры на его гранях. Поляризация кристалла — это пространственное разделение зарядов, сопровождающееся возникновением па одной из граней кристалла положительного заряда, а на другой — отрицательного. Пироэлектрический эффект проявляется только при наличии изменения температуры кристалла во времени, т. е. при регистрации модулированного или импульсного излучения. Пироэлектрическим эффектом обладают монокристаллы триглицинсульфата (ТГС), ниобата лития, керамики типа титаната цирконата свинца, сульфата лития, стронций-барий ниобата и др.  [c.16]

Каждое движение атома — это одновременно и движение связанных с ним свободных электронов, поскольку только такое совместное движение обеспечивает сохранение электрической нейтральности. Но вот представим себе поверхность, которую механически деформируем и нагреваем. Такая поверхность обеспечивает, очевидно, выброс в пространство свободных электронов за счет одновременно и термоэлектронной и экзоэлектронной эмиссий. Значительная убыль свободных электронов в пространство над кристаллом весьма снижает отрицательный потенциал внутри кристалла. Положительно заряженные частицы кристаллической решетки начинают друг друга взаимно отталкивать и выталкивать из кристалла, а если уход массы свободных электронов происходит быстро, то это можеТ привести к взрьшу кристалла. Если оценить энергетические характеристики этого эффекта, то такого рода разрушение кристалла далеко выходит за пределы понятия плав-28  [c.28]

Номото удалось показать, что по интерференционным фигурам можно определить, является ли данный кристалл кварца левовращающим или правовращающим. Действительно, пусть положительное направление оси X определяется появлением на соответствующей стороне кристалла положительного заряда при сжатии кристалла  [c.361]

Существует ряд схем и способов описания вариантов взаимного расположения атомов в кристалле. Взаимное расположение атомов в одной из плоскостей показано на схеме разме-ш,ения атомов (рис. 3). Воображаемые линии, проведенные через центры атомов, образуют решетку, в узлах которой располагаются атомы (положительно заряженные ионы) это так называемая кристаллографическая плоскость. Многократное повторение кристаллографических плоскостей, расиолол енных параллельно, воспроизводит пространственную кристаллическую решетку, узлы которой являются местом расположения атомов (ионов). Расстояния между центрами соседних атомов измеря-  [c.22]

VI е т а л л и ч е с к а я связь отличается тем, что валентные электроны являются общими для всего кристалла. Металл пред-ста ляет собой совокупность пространственной решетки, построенной из положительных ионов, возникающих в результате отщепления от каждого из атомов одного или нескольких валентных электронов, и этих отщепившихся электронов, движущихся внутри ренлетки и взаимодействующих как с ионами, расположенными в узлах решетки, так и друг с другом. Электроны не принадлежат определенным атомам. Они непрерывно н бсс.чоря-дочно перемещаются внутри кристаллической решетки, переходят от одного атома к другому, связывая их. Скопление электронов, осуществляющих. металлическую связь, получило название элгектронного газа.  [c.9]

Дислокации образуются вследствие появления в кристалле дополнительной атомной плоскости (экстраплоскости), из-за частичного сдвига одной части плоскостей по отношению к другой. На рис. 12.35 показана краевая, или линейная, дислокация. Линия дислокации представляет проекцию внедренной экстраплоскости и обозначается знакомХ, если экстраплоскость вставлена сверху (положительная дислокация), — знаком Т, если экстраплоскость вставлена снизу (отрицательная дислокация). Степень искаженности кристаллической решетки (показатель энергии нестабильности дислокации) определяется вектором Бюргерса Ь,  [c.470]

Чисто мнимое решение (2-24) соответствует рааруше-нию решетки, следовательно, со должна быть величиной вещественной. Для того Чтобы величина со была положительна, главный минор динамической матрицы кристалла должен быть положительным.  [c.47]

Среда, физические свойства которой зависят от направления, называется анизотроппой. Анизотропия среды имеет место по отногиеиию к каким-либо свойствам среды — механическим, оптическим и т. д. Обычно анизотропные по отношению к какому-либо свойству тела являются анизотропными н по другим свойствам. Однако есть и исключения. Например, оптически изотропный кристалл каменной соли, где в узлах кубической решетки расположены отрицательные ионы хлора и положительные ионы на 1 рпя, обладает анизотропией по механическим свойствам — его мехаин-ческие свойства вдоль ребра и диагонали различны.  [c.246]


В качестве основного объекта исследования разумно и по сей день выбирать упомянутый выше исландский шпат, хотя почти все кристаллы в той или иной степени обладают этим свойством. Опыт показывает, что при освещении кристалла исландского шпата узким пучком света в нем возникают два луча, которые со времен Гюйгенса называют обыкновенным и необыкновенным (рис.3.1). Этот эффект наблюдается и при нормальном падении света на естественную грань кристалла. Для необыкновенного луча показатель преломления rig зависит от направления луча а кристалле, тогда как Пд — показатель преломления обыкновенного луча — остается постоянным при любом угле падения световой волны на кристалл. В частности, для исландского шпата (для света с длиной волны X = 5893А — желтый дуб.иет натрия) Лц = 1,658, а 1,486 < < 1,658. Следовательно, в данном случае Пе < По- Такие кристаллы называют отрицательными. Вместе с тем существует широкий класс веществ (например, кристаллический кварц), для которых > л,,. Такие кристаллы называют положительными.  [c.114]

По определению собственная энергия системы равна работе, которую нужно произвести, чтобы образовать эту систему из бесконечно малых элементов, первоначально находившихся на бесконечно больших расстояниях друг от друга. Рассмотрим собственную энергию сил тяготения — гравитационную энергию она всегда отрицательна, потому что силы тяготения являются силами притяжения и нужно произвести положительную работу против них, чтобы разделить, например, атомы, входяшие в состав звезды, удалив каждый атом в бесконечность. Собственная гравитационная энергия обычно определяется при решении задач небесной механики, относящихся к звездам и галактикам. Расчеты собственной электростатической энергии часто производятся в теории кристаллов — как диэлектриков, так и металлов.  [c.273]

Авторы [2] при помощи аналогии топологического характера положительно отвечают на фундаментальный вопрос о возможности существования в природе магнитных монополей (полюсов магнита, существующих отдельно друг от друга, или, иными словами, магнитных зарядов). Исключительная важность данного вопроса заключается в том, что обнаружение (или доказательство невозможности существования) монополей позволило бы ответить на многие принципиальные вопросы естествознания. В частности, обнаружение магнитных зарядов было бы первым серьезным подтверждением теорий Великого объединения, единым образом описывающих электромагнитное, слабое и сильное взаимодействия [3] Суть аналогии состоит в создании в слоистых жидких кристаллах нематического и холестерического типов определенной топологии распределения векторов, описывающих ориентацию составляющих кристалл молекул. Данная топология аналогична топологии распределения векгоров магнитного поля вокруг гипотетического монополя Дирака. Таким образом, распределение векгоров ориентации молекул в жидких к-ристаллах можно визуально наблюдать в поляризационный микроскоп. Это позволяет по особенностям поведения жидких кристаллов выдвигать предположения о возможном поведении магнитных монополей и принципиальных методах их экспериментального обнаружения.  [c.15]

Авторы [19] при 1ЮМОЩИ аналогии топологического характера положительно отвечают на фундаментальный вопрос о возможности существования в природе магнитных монополей (полюсов магнита, существуюпщх отдельно друг от друга, или, иными словами, магнитных зарядов). Исключительная важность данного вопроса заключается в том, что обнаружение (или доказательство невозможности существования) монополей позволило бы ответить на многие принципиальные вопросы естествознания. В частности, обнаружение магнитных зарядов было бы первым серьезным подтверждением теорий Великого объединения, единым образом описывающих электромагнитное, слабое и сильное взаимодействия [20]. Суть аналогии состоит в создании в слоистых жидких кристаллах нематического и холестерического типов опре-.  [c.39]

Условно принято, что дислокация положительна, если она находится в верхней части кристалла и обозначается знаком L, и отрицательна, если находится в нижней части (знак Т ). Дислокации одтгаго и того же знака отталкиваются, а противоположного - притягиваются. Под воздействием напряжения краевая дислокация может перемещаться по кристаллу (по плоскости сдвига), пока не достигнет границы зерна (блока). При этом образуется ступенька величиной в одно межатомное расстояние. Винтовая дислокация (см. рис. 6.2,6) в отличие от краевой параллельна вектору сдвига.  [c.265]

В предыдущем параграфе мы упоминали, что показатели преломления кристаллов для обыкновенного и необыкновенного лучей неодинаковы. Так, для исландского шпата По = 1,658, а п,, может принимать в зависимости от направления луча в кристалле все значения между 1,486 и 1,658. Кристаллы, для которых, как и для исландского шпата, /ig По, называют отрицательными. Кристаллы, для которых Пе По (напримвр, квзрц), НОСЯТ иззвание положительных.  [c.384]


Смотреть страницы где упоминается термин Кристалл положительный : [c.40]    [c.78]    [c.210]    [c.518]    [c.304]    [c.30]    [c.13]    [c.52]    [c.10]    [c.389]    [c.83]    [c.263]   
Оптические волны в кристаллах (1987) -- [ c.94 ]



ПОИСК



Двойное лучепреломление в одноосных кристаллах. . — Положительные и отрицательные кристаллы. Волновые поверхности Френеля

Поккельса эффект положительный кристалл



© 2025 Mash-xxl.info Реклама на сайте