Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел Влияние глубины наклепанного сло

Глубина резания При обработке пластичного металла на малых глубинах резания (0,1—0,2 мм) по слоям, наклепанным на предыдущей операции, шероховатость обработанной поверхности снижается (при отделочной обработке) в пределах одного класса Не оказывает существенного влияния на глубину наклепа Не оказывает существенного влияния  [c.397]

Задний угол Увеличение зоны соприкосновения инструмента с обрабатываемой поверхностью детали приводит к повышению трения и увеличению шероховатости обработанной поверхности в пределах одного класса При увеличении заднего угла в пределах 3 — 15° глубина наклепа уменьшается На износостойкость не оказывает существенного влияния при углах в пределах от 3 до 15°. Усталостная прочность может незначительно снижаться  [c.398]


При увеличении заднего угла а в пределах 3-4-15 глубина наклепа уменьшается. На износостойкость материала задний угол не оказывает существенного влияния, при углах в пределах от 3 до 1,5° усталостная прочность может незначительно снижаться.  [c.133]

Известно, что растягивающие напряжения в поверхностном слое снижают предел выносливости, а сжимающие — повышают. Механические свойства поверхностного слоя и сердцевины также влияют на эксплуатационные свойства. Для гладких валов увеличение глубины наклепа до 15% от радиуса изделия оказывает положительное влияние на повышение предела усталости. При наличии концентраторов напряжений прочность деталей зависит от свойства поверхностного слоя, для достижения эффективного упрочнения достаточно небольших глубин более прочного слоя. Следует иметь в виду, что эффективность упрочнения таких деталей, как листовые рессоры, повышается при обработке их наклепом в напряженном состоянии, совпадающем с тем, которое они имеют в эксплуатации.  [c.403]

Для оценки влияния величины концентратора напряжений на эффективность поверхностного наклепа были проведены испытания на усталость образцов из стали 45 диаметром 26 мм гладких и с концентратором напряжений глубиной 4 мм, радиусом при вершине 0,2 мм и углом при вершине 60°. Каждый образец имел по четыре надреза, расположенных на расстоянии 15 мм один от другого, что позволило применить методику исследования трещин, развивающихся в концентраторах, работающих на различных уровнях переменных напряжений. Результаты испытаний, проведенных на базе Ю циклов, приведены на рис. 63. Исходные гладкие образцы имели предел выносливости 225 МПа (кривая /). Кривые 2 и 3, соответствующие возникновению трещины и разрушению надрезанных образцов, показывают, что выбранный для исследований концентратор напряжений (а(т = 4), является закритическим, т. е. обусловливает возникновение в нем нераспространяющихся усталостных трещин. Поверхностный наклеп приводит к резкому (более чем в  [c.154]

Увеличение глубины и степени наклепа при уменьшении подачи за пределами оптимальных значений подач объясняется влиянием процесса скольжения режущего лезвия, создающего дополнительную деформацию поверхностного слоя.  [c.100]


Влияние режимов резания и геометрии фрезы на наклеп поверхностного слоя при попутном фрезеровании жаропрочных сплавов в основном аналогично влиянию этих же факторов при встречном фрезеровании. Подача оказывает наиболее сильное влияние на поверхностный наклеп. При применении СОЖ снижается наклеп поверхностного слоя и тем заметнее, чем меньше подача. Скорость резания в пределах исследованных значений (v = Зч-- 18 м/мин) оказывает незначительное влияние на глубину и степень наклепа. Можно считать, что глубина резания в пределах от 1 до 6 мм не влияет на наклеп поверхностного слоя при попутном фрезеровании.  [c.103]

Детали из алюминиевых сплавов можно подвергать обкатыванию шариками и роликами для повышения твердости, стабилизации неподвижных посадок и повышения выносливости. Исследование влияния наклепа некоторых сплавов на ограниченный предел выносливости показывает, что глубина наклепанного слоя и остаточные, напряжения, возникающие при этом, ниже, чем у стальных деталей. Тем не менее, даже по сравнению с полированными образцами, предел выносливости упрочненных образцов оказьшается несколько выше.  [c.100]

Влияние второго (технологического) фактора связано с тем, что при механической обработке образцов в их поверхностных слоях создается наклеп и остаточные напряжения, которые по-разному влияют на величину предела выносливости больших и малых образцов. Для исключения влияния этого фактора при исследовании масштабного эффекта пользуются или отжигом в вакууме, снимающим наклеп и остаточные напряжения без окисления поверхности, или применяют много проходов при обточке образцов с постепенным уменьшением глубины резания и подачи для существенного уменьшения наклепа и остаточных напряжений.  [c.57]

Наклеп поверхности наблюдается при всех методах обработки резанием и характеризуется глубиной и степенью наклепа. Необходимо иметь в виду, что предел выносливости материала часто зависит от предшествующей обработки. Например, при шлифовании стали предел выносливости повышается незначительно и зависит от режимов предшествующей шлифованию токарной обработки. Влияние на усталостную прочность предшествующих видов обработки устраняется окончательной обработкой поверхностей механическим полированием, обдувкой дробью, обкаткой роликами.  [c.89]

Скорость резания определяет скорость деформации поверхностного слоя. Известно [107], что с повышением скорости деформации происходит рост предела прочности и предела текучести стали, причем предел текучести растет быстрее предела прочности. С повышением предела текучести, а следовательно, с понижением пластичности обрабатываемого материала степень и глубина наклепанного слоя уменьшаются [99]. Таким образом, повышение скорости резания как скоростной фактор действует в сторону уменьшения наклепа. Но скорость резания оказывает непосредственное влияние также и на деформацию срезаемого слоя [25]. Так, при свободном резании стали ЗОХ ( = 5 мм а=0,149 мм Y=10°) усадка стружки при скорости резания 0,6 м шн составляет 4,2 против 2,2 при скорости резания 140 м/мин, хотя при работе на указанных скоростях нарост отсутствует и наблюдаются почти одинаковые средние значения ц,.  [c.225]

Влияние заднего угла на глубину и степень наклепа проявляется более резко при его изменении в пределах от 1°30 до 6°, чем в пределах а = 6- 12°.  [c.389]

Характер влияние состояния ПС на долговечность материала деталей зависит от базы испытаний (времени или числа циклов) и температуры. При различном исходном деформационном упрочнении и технологических остаточных напряжениях интенсивность разупрочнения металла ПС также различная. С увеличением глубины и степени наклепа независимо от остаточных напряжений интенсивность снижения предела длительной прочности и ограниченного предела усталости с ростом базы испытаний увеличивается.  [c.94]


Обкатка роликами и шариками применяется в машиностроении как средство упрочнения валов, осей, пальцев, шпилек, зубчатых колес и других деталей. Накатывают цилиндрические поверхности, галтели, канавки, впадины зубьев и шлицев, торцовые поверхности и резьбы. По эффективности обкатка занимает одно из первых мест среди других методов поверхностного упрочнения. Она позволяет получить слой наклепа 3 мм и более, т. е. значительно больший, чем, например, при дробеструйной обработке. Это особенно важно для деталей больших размеров (глубина наклепа при обкатке подступич-ной части вагонных осей достигает 19 мм). Твердость поверхностных слоев, по сравнению с исходной, повышается на 20—40%, предел выносливости гладких образцов — на 20—30%, а при работе в коррозионной среде в 4 раза. В зонах концентрации напряжений, в местах контакта с напрессованными деталями предел выносливости повышается в 2 раза и более. Срок службы различных валов в результате накатки увеличивается в 1,5—2 раза, осей вагонов — в 25 раз, штоков молотов — в 2,5—4 раза и т. д. Обкатка не только создает наклеп и формирует остаточные напряжения сжатия, но и на 2—3 класса снижает шероховатость поверхности, доводя ее до 8—10-го классов. В связи с этим в ряде случаев.обкатка вытесняет малопроизводительное шлифование. Наряду с непосредственным упрочнением от наклепа, при этом устраняется вредное влияние на прочность деталей концентраторов напряжения, возникающих при шлифовании из-за прижогов.  [c.107]

Чтобы определить влияние наклепа, изучали износостойкость образцов из стали ОХНЗМ, поверхность трения которых была наклепана дробью на различную глубину, а также образцов, поверхность трения которых после наклепа дробью была подвергнута механическому полированию и гидрополированию. Экспериментами было установлено, что с увеличением глубины наклепа износостойкость растет до определенного предела, а затем снижается. Износостойкость образцов, поверхность трения которых была наклепана на глубину 0,35 мм (время обдувки 1 мин), была такой же, как образцов, обработанных резанием (точением или грубым шлифованием). При наклепе образцов на глубину 0,2 мм (время обдувки 30 с) в условиях данного опыта (трение с 10%-ным скольжением, поверхность трения смазана) износостойкость стали ОХНЗМ повышалась на 50—100% в зависимости от величины нагрузки. С увеличением  [c.313]

Влияние обработки гидрополированием на предел выносливости стали изучалось на обычных образцах диаметром 14 мм с концентратором напряжений в виде кругового надреза глубиной 1 мм. Все образцы изготовляли на токарном станке из стали 1X13 одной плавки после нормализации НВ 200) при одинаковых режимах. Затем поверхность участка образца с надрезом обрабатывали гидрополированием (до 6-го класса чистоты) или механическим полированием (до 8-го класса чистоты), или дробью (до 5-го класса чистоты), или дробью с последующим гидрополированием (до 7-го класса чистоты). В зависимости от метода обработки поверхностный слой образцов имел различную глубину наклепа после обработки дробью 0,3 мм дробью с абразивом 0,2 мм гидрополированием (зерно ЭК-100) 0,15 мм после грубого шлифования 0,75 мм.  [c.315]

Из фиг. 89 видно, что с увеличением скорости резания (в пределах до 10 —200 MjMUH) толщина наклепанного слоя уменьшается. Из опытов тех же авторов следует, что с увеличением подачи и глубины резания наклеп увеличивается, причем подача оказывает более сильное влияние на наклеп, чем глубина резания.  [c.91]

Применяя холодную обработку давлением, необходимо учитывать влияние, которое пластическая деформация оказывает на микроструктуру и ( )изико-механические свойства металла. Изменение свойств металла зависит в первую очередь от степени пластической деформации, с увеличением которой увеличиваются все показатели сопротивления металла деформированию, т. е. металл упрочняется, повышается его твердость, предел прочности, текучести и пропорциональности. Одновременно снижаются показатели пластичности — относительное удлинение, ударная вязкость, относительное сужение. Ниже приводятся результаты исследований физических параметров качества поверхностного слоя титана (микроструктуры, поверхностной твердости, степени и глубины наклепа) при чистовой обработке давлением в зависимости от условий и режима обработки.  [c.46]

Экспериментально установлено, что влияние деформационного упрочнения ПС на усталостную и длительную прочность зависит от степени деформации ПС и условий эксплуатации температуры, нагрузки, среды, продолжительности работы. Для каждого металла и сплава в конкретных условиях эксплуатации существует определенная степень предварительной пластической деформации, которая создает субструктуру металла с величиной скрытой энергии наклепа, обеспечивающей минимальную скорость процесса разрушения, т.е. наибольшую прочность при данной температуре и нагрузках. Так, у деталей, работающих при невысоких температурах, наклеп ПС, как правило, повышает предел выносливости. По данным Д. Д. Папшева [43] увеличение глубины наклепа с 35мкм до 80мкм в процессе обработки резанием стали 45 повысило предел выносливости на 8%. При точении и последующем полировании усталостная прочность повьпнается на 20...25% за счет наклепа и на 12... 15% за счет снижения высоты микронеровностей на операции полирования.[48]  [c.90]


Как видим, после всех видов обработки с изменением глубины наклепа в пределах от 15мкм до 160мкм сопротивление высокотемпературной усталости на базе 10 циклов снижается на 3...7%, а на базе 10 циклов на 5.. 17%. В условиях, когда детали работают при переменных температурах, наблюдается явление термоусталости. В этом случае отрицательное влияние наклепа ПС более сильно, чем на усталость при переменных нагрузках. Так, в экспериментах на образцах из жаропрочных сплавов, которые упрочнялись обдувкой дробью и  [c.91]

Для достижений максимальной эффективности упрочнения деталей, работающих в условиях статических и динамических нагрузок, рекомендуется содержание углерода в цементованном слое поддерживать в пределах 0,80—1,05%. В случае применения сталей с 0,27—0,34% С глубину цементованного слоя следует назначать в пределах 0,5—0,7 мм. Для цементуемых сталей, содержащих 0,17—0,24% С, глубину цементованного слоя принимают от 1,0 до 1,25 мм. При этом следует иметь в виду, что сопротивление усталости деталей машин без концентраторов напряжений при малых глубинах слоя зависит от прочности сердцевины, при больших — от прочности поверхностного слоя. В этом случае повышение глубины упрочненного слоя оказывается полезным только до 10—20%) радиуса детали. При глубине слоя меньше этих значений сопротивление усталости повышается с увеличением прочности сердцевины. При наличии на поверхности деталей концентраторов напряжений сопротивление усталости повышается с увеличением остаточных напряжений сжатия, а глубина слоя должна быть очень малой (1—2% радиуса детали). Главным фактором, вызывающим увеличение предела выносливости при химико-термических методах обработки деталей, являются остаточные напряжения, возникающие в материале детали в процессе упрочнения. При поверхностной закалке т. в. ч. главное влияние на повышение предела выносливости и долговечности оказывает изменение механических характеристик материала поверхностного слоя. В еще большей степени это относится к упрочнению наклепом.  [c.302]

Влияние рекристаллизационного отжига на предел выносливости упрочненной обкаткой детали из стали 25 изучалось д-ром техн. наук проф. И. В. Кудрявцевым. Обкаткой роликами на образцах создавался поверхностный наклеп на глубину более  [c.356]

Положительное влияние последующего за цементацией поверхностного наклепа было отмечено также при повторных ударных воздействиях на цементованные детали. При ударной изгибающей нагрузке испытывали образцы, вырезанные из цементованных шестерен стали 18ХГТ. При этом установлено, что применение после цементации дробеструйного наклепа повысило условный предел выносливости на 20%. В работе [8] круглые образцы из стали 18ХГТ с круговой выточкой (радиус 2 мм) испытывают изгибом при повторных ударах от падающего груза (5 кГ, высота 30 мм) с поворотом образца на 180° после каждого удара. Результаты испытаний показывают (рис. И), что увеличение глубины цементованного слоя неблагоприятно сказывается на сопротивлении деталей разрущению при переменных ударных нагрузках. Положительный 262  [c.262]

Технологический фактор связан с влиянием наклепа и остаточных напряжений от механической обработки. Влияние этого фактора исключается при изготовлении образцов с. большим числом проходов при резании и постепенным уменьшением глубины ре-еания и подачи. При этом толщина наклепанного слоя и остаточные напряжения получаются минимальными и не влияют существенно на сопротивление усталости. В ряде исследований проводили отжиг образцов в вакууме для П0Л1ЮГ0 снятия наклепа и остаточных напряжений. После исключения влияния металлургического и технологического факторов существенное снижение пределов выносливости связано со статистическим фактором и хорошо описывается количественно и качественно уравнениями, вытекающими из статистической теории подобия усталостного разрушения.  [c.145]

Специальное изучение показало, что для меди влияние наклепа от механической обработки микрообразцов сказалось на повышении предела текучести на 40—60%. Относительное удлинение соответственно уменьшилось с 45 до 40%- Временное сопротивление Ов, сопротивление разрушению и относительное сужение заметно не изменились. Электрополирование с удалением слоя до 0,06—0,07 мм не внесло существенных изменений в эти результаты. Очевидно, что для очень мягких материалов типа меди наклеп проникает на значительную глубину.  [c.96]

Благодаря осадке металла в направлении удара пропсходпт его раздача в перпенди-куля шых нап )авлениях, что снижает растягивающие напряжения или даже вызывает сжатие. Глубина расиространения эффекта проковки обычно находится в пределах менее 10 мм и зависит от формы инструмента н мощностп ударов. Известны случаи отрицательного влияния проковки в мало-пластичных металлах вследствие чрезмерного наклепа. Проковка имеет преимущество перед другими методами в отношении маневренности и простоты оборудования.  [c.177]

У деталей с невысокой концентрацией напряжений и работающих при температуре, близкой к нормальной, наклеп увеличивает предел выносливости в среднем примерно на 30%. Влияние наклепа на выносливость жаропрочных сплавов зависит от химического состава сплава, рабочей температуры, метода создания някпепя и т д. Подробно этот вопрос рассмотрен в работе [24]. Глубину и интенсивность наклепанного слоя, как и знак остаточных напряжений, можно регулировать путем подбора режимов механической обработки и сочетаний последней с различными видами термической обработки. Например, увеличение скорости и уменьшение глубины резания, применение более мягких кругов и обильного охлаждения снижают величину и глубину распространения растягивающих остаточных напряжений. Отжиг, сквозной нагрев с последующим быстрым охлаждением или виброконтактное полирование, выравнивающее температуру в поверхностном слое, позволяют получить остаточные напряжения сжатия [26]. Наклеп и микроструктура металла деталей влияют на их электромагнитные и другие физические свойства. Так, наклеп пластин магнитонроводов уменьшает их магнитную проницаемость у крупнозернистой электротехнической стали магнитная проницаемость выше, чем у мелкозернистой, и т. д.  [c.328]


Смотреть страницы где упоминается термин Предел Влияние глубины наклепанного сло : [c.203]    [c.136]    [c.147]    [c.316]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.156 ]



ПОИСК



Глубина



© 2025 Mash-xxl.info Реклама на сайте