Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критическая сила численное определение

Основное отличие задач статики стержней с промежуточными связями, рассмотренных в 2.2, от задач статической устойчивости стержней с промежуточными связями заключается в том, что в задачах устойчивости неизвестными являются внешние силы (их критические значения). Численные методы определения критических значений нагрузок для стержней с промежуточными связями изложены в 3.5.  [c.112]


Если стержень имеет переменную изгибную жесткость или нагружен распределенной осевой нагрузкой, то получить аналитическое решение для системы (13.16) нельзя. В этом случае для определения критической силы используют численные методы.  [c.527]

Из самого понятия критической силы следует, что все гиперплоскости отсекают на координатных осях Х Хг,..., Хп отрезки, равные соответствующим критическим силам. Для численного определения наименьшего значения этих критических сил достаточно положить, что все действующие нагрузки, кроме нагрузки одного вида, равны нулю, и решить задачу устойчивости оболочки только от нагрузки одного вида. В таком случае гиперплоскость определяется только одной точкой на соответствующей оси Х . После этого следует решить задачу устойчивости от дей-  [c.389]

Матрица А этого уравнения обладает многими замечательными свойствами. Она является весьма разреженной матрицей общего вида, ее система фундаментальных ортонормированных функций обеспечивает хорошую устойчивость численного процесса решения краевой задачи, в определителе отсутствуют точки разрыва 2-го рода, формируется без привлечения матричных операций. Эти преимущества позволяют эффективно определять спектр собственных значений - корни уравнения (6.61). Точность спектра зависит, естественно, от точности исходной модели, где, напомним, используется только один член ряда (6.2). Уравнение (6.61) позволяет определять критические силы как статическим (при со = 0), так и динамическим методами. При определении собственных значений пластин нужно учитывать, что из уравнения (6.61) можно получить спектры частот и критических сил при фиксированном числе полуволн в направлении оси ох (например, для коэффициентов А, В, С таблицы 17 одна полуволна в направлении оси ох и множество полуволн в направлении оси оу). Вычисляя коэффициенты А, В, С при второй частоте колебаний балки, из уравнения (6.61) можно получить спектры пластины для двух полуволн в поперечном и множества полуволн в продольном направлениях и т.д. Точность решения задач устойчивости и динамики прямоугольных пластин по МГЭ определим из примеров.  [c.220]

Турбулентность принадлежит к числу очень распространенных и, вместе с тем, наиболее сложных явлений природы, связанных с возникновением и развитием организованных структур (вихрей различного масштаба) при определенных режимах движения жидкости в существенно нелинейной гидродинамической системе. Прямое численное моделирование турбулентных течений сопряжено с большими математическими трудностями, а построение общей теории турбулентности, из-за сложности механизмов взаимодействующих когерентных структур, вряд ли возможно. При потере устойчивости ламинарного течения, определяемой критическим значением числа Рейнольдса, в такой системе возникает трехмерное нестационарное движение, в котором, вследствие растяжения вихрей, создается непрерывное распределение пульсаций скорости в интервале длин волн от минимальных, определяемых вязкими силами, до максимальных, определяемых границами течения. На условия возникновения завихренности и структуру развитой турбулентности оказывают влияние как физические свойства среды, такие как молекулярная вязкость, с которой связана диссипация энергии в турбулентном потоке, так и условия на границе, где наблюдаются тонкие пограничные вихревые слои, неустойчивость которых проявляется в порождении ими вихревых трубок. Турбулизация приводит к быстрому перемешиванию частиц среды и повышению эффективности переноса импульса, тепла и массы, а в многокомпонентных средах - также способствует ускорению протекания химических реакций. По мере накопления знаний о разнообразных природных объектах, в которых турбулентность играет значительную, а во многих случаях определяющую роль, моделирование этого явления и связанных с ним эффектов приобретает все более важное значение.  [c.5]


Линия S. Рассмотрим далее линию S. Из табл. 34 мы устанавливаем, что в направлениях, перпендикулярных S, все ветви имеют нулевой наклон. Хотя приведен только случай S = = (л, я, 0)1/а, результат остается в силе для всех точек на линии S. Изучая далее поведение дисперсионных кривых вдоль S, мы можем установить наличие дополнительных критических точек в кал<дой ветви. Другое дело — определение индексов этих точек для этого требуется детальная топологическая информация, которую можно получить только численными расчетами.  [c.172]

В настоящее время при широком распростронении вычислительной техники и внедрении ее в учебный процесс изложенный вариант численного определения критической силы является наиболее эффективным.  [c.528]

Описанная последовательность операций типична для численного определения критических сил, и такого рода прот цедуры широко используются, особенно в тех случаях, где  [c.442]

Приведенные численные примеры подтверждают высказанные здесь соображения о возможности определения наименьшего параметра критической системы сил одноярусных стержневых систем с неподвижными узлами предлагаемым приближенным способом. По данному способу критическая сила определяется отдельно для каждой стойки с примыкающими к ней ригелями. Наименьшая из всех определенных таким образол критических сил может быть принята за наименьший параметр критической системы сил. Точность такого решения вполне достаточна для целей практики.  [c.237]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Определение приращений векторов внешних нагрузок. Выражения для приращений векторов внешней нагрузки (q, )х, Р< > и-при непрерывном деформировании стержня необходимы при численном решении нелинейных уравнений равновесия стержня, когда требуется явное выражение для компонент нагрузки. Приращения векторов внешней нагрузки необходимы и при определении критических нагрузок при решении задач статической устойчивости стержней. В дальнейшем считается, что силы, приложенные к стержню, и геометрические параметры, входящие в выражения для приращений сил, приведены к безразмерной форме. Частные случаи определения прирашенин векторов изложены в Приложении 3. Там же приведен случай определения приращения вектора при малых углах поворота связанных осей [формула (П. 159)].  [c.29]

Аналитическое решение общего уравнения (7.5) удается получить не только при постоянных изгибной жесткости EJ я осевой силе Nq, ной при некоторых конкретных законах их изменения по длине стержня. Однако в общем случае при призвольных законах изменения изгибной жесткости и начальной осевой силы аналитически проинтегрировать уравнение (7,5) не удается. Тогда для определения критических нагрузок и форм потери устойчивости прибегают к приближенным аналитическим или численным методам.  [c.189]

НО С Граничными условиями (41.2), (41.3), (41.10), учитывающими существование на свободной поверхности термокапиллярных сил. Хотя задача допускает точное решение, полу-чающееся характеристическое соотношение для определения границы устойчивости оказывается очень сложным. Поэтому в работе Р] было получено приближенное решение задачи по методу Фурье. В результате расчетов была численно найдена связь между тремя параметрами — числами Рэлея К, Марангони В и волновым числом к на границе устойчивости ). Минимизация нейтральных кривых позволяет получить связь минимальных критических значений Нгп и Вт, т. е. определить границу устойчивости равновесия при одновременном действии обоих механизмов неустойчивости.  [c.289]

Следует подчеркнуть, что при этом остаются в силе все результаты ггеории, записанные в безразмерном виде при помощи единиц, определенных через аир (см. формулу (6.9)), В частности, безразмерная критическая ширина щели остается равной o = я, безразмерная максимальная скорость Vjn = 1, максимальная безразмерная угловая скорость og = = V2 и т. д. Однако при переходе к размерной записи результатов меняются не только их численные значения, но и характер полученных закономерностей, что связано с изменением показателей степени в формулах (6.59) по сравнению с ранее применявшимися выражениями.  [c.695]


Смотреть страницы где упоминается термин Критическая сила численное определение : [c.99]    [c.666]    [c.163]   
Механика стержней. Т.1 (1987) -- [ c.118 , c.126 ]



ПОИСК



Сила критическая

Силы Определение

Силы критические — Определени

Численное определение ЧКХ



© 2025 Mash-xxl.info Реклама на сайте