Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь пористая

Медь пористая (ГОСТ 4960-75) Все виды обработки деталей из сталей, жаропрочных сплавов черновая обработка деталей из твердых сплавов прошивание сквозных отверстий  [c.840]

Медь пористая МП-15 ГОСТ 4960—75 Порошок  [c.38]

Проведение спекания в условиях, когда входящий в композицию легкоплавкий компонент образует при спекании жидкую фазу, активизирует усадку и обеспечивает получение заготовок с малой или даже нулевой пористостью, с высокими физико-механическими свойствами. С этой же целью, например, применяют пропитку тугоплавких материалов серебром или медью при производстве электро-контактных деталей.  [c.424]


Для защиты латуни от растрескивания менее эффективно пассивирование в хроматных растворах. Можно отметить положительное действие смазок хорошую защиту дает также покрытие цинком. Покрытия серебром, оловом и медью не защищают латунь от растрескивания, так как эти покрытия, будучи пористыми, не могут оказать электрохимической защиты.  [c.119]

Резина обладает хорошей адгезией к стали, чугуну, олову, цинку и хрому. При гуммировании свинца и алюминия ускоряется процесс старения резины. Медь непригодна для гуммирования, вследствие того что образующийся па поверхности металла порошкообразный сульфид не пристает ни к меди, ни к резине, и, кроме того, действует иа резину разрушающе. Поэтому перед покрытием резиной на поверхность меди наносят слой полуды. При гуммировании чугуна получаются менее прочные покрытия, чем при обкладке резиной листовой стали. Стальное литье часто имеет пористую поверхность, и поэтому его не рекомендуется гуммировать.  [c.443]

Эмпирическая зависимость VII X/ Xq = (1 - П) ехр[ (1 4 + 0,15П) X X П] получена при обработке экспериментальных данных для насыщенных воздухом пористых волокнистых металлов из никеля, меди и коррозионно-стойкой стали при совпадении направлений волокон и теплового потока [ 18].  [c.32]

Обесцинкование — это вид разрушения цинковых сплавов, например латуни, при котором преимущественно корродирует цинк, а медь остается на поверхности в виде пористого слоя — см. [1, рис. 4 на G. 333]. Прокорродировавшее таким образом изделие нередко сохраняет исходную форму и может показаться неповрежденным, но его прочность и особенно пластичность значительно снижены. Подвергшаяся обесцинкованию латунная труба способна выдерживать внутреннее давление воды, однако может разрушиться при гидравлическом ударе или проведении ремонтных работ.  [c.28]

Никелевые покрытия в основном получают электроосаждением. Металл наносят или непосредственно на сталь или иногда на промежуточное медное покрытие. Подслой меди нужен, чтобы облегчить полировку никелируемой поверхности (медь мягче стали). Это позволяет также уменьшить толщину никелевого слоя (никель дороже меди), необходимую для обеспечения минимальной пористости. Правда, в промышленной атмосфере слишком тонкие никелевые покрытия, нанесенные на медь, могут корродировать быстрее покрытий непосредственно на стали, в основном из-за того, что продукты коррозии меди, образующиеся в порах никелевого покрытия, усиливают агрессивное воздействие на никель [3]. Но такая ситуация не обязательно возникает в других атмосферах.  [c.233]


При работе механизмов при высоких температурах, в химически активных средах и в вакууме жидкие смазки теряют свои свойства. В этих случаях применяют твердые смазки, к которым относятся графит, а также сульфиды и селениды молибдена или вольфрама. Из твердых смазок наибольшее распространение получил дисульфид молибдена (МоЗ ), который наносится на трущиеся поверхности в виде пленки толщиной 20. . . 30 мкм и применяется в обычных условиях и 1 вакууме при больших перепадах температур (—180. .. -г 400 С) и высоких удельных давлениях. В опорах трения часто применяют металлокерамические самосмазывающиеся материалы в виде бронзо-графитовых и железо-графитовых материалов, где кроме твердой смазки (графита) присутствует жидкая смазка, заполняющая поры материала. Применяют также пористые антифрикционные материалы на основе меди и серебра, поры которых заполнены сульфидами, селенидами и теллуридами молибдена, вольфрама, ниобия. В этих случаях твердая смазка обеспечивает высокую несущую способность и малые коэффициенты трения.  [c.168]

Особое место среди теплообменных аппаратов разных типов занимают тепловые трубы. Тепловой трубой называется испарительно-конденсационное устройство, представляющее собой закрытую камеру, внутренняя полость которой выложена слоем капиллярно-пористого материала (фитилем). Один конец тепловой трубы служит зоной подвода, а противоположный — зоной отвода теплоты. За счет подвода теплоты жидкость, насыщающая фитиль, испаряется. Пар под действием возникшей разности давлений перемещается к зоне конденсации и конденсируется, отдавая теплоту парообразования. Конденсат под действием капиллярных сил возвращается по фитилю в испарительную зону. Происходит непрерывный перенос теплоты парообразования от зоны нагрева к зоне охлаждения (конденсации). Тепловые трубы не требуют затрат энергии на перекачку теплоносителя, они работают при малом температурном напоре, поэтому обладают большой эффективной теплопроводностью, превышающей на несколько порядков теплопроводность серебра или меди — наиболее теплопроводных материалов из всех известных. Для тепловых труб используется большое разнообразие теплоносителей в зависимости от интервала рабочих температур.  [c.219]

Чем выше прочность сплава при высоких температурах, а следовательно, и прочность твердой корки, тем больше должно быть Роп- Этим объясняется то обстоятельство, что для одних и тех же заготовок из алюминиевых сплавов требуется меньшее давление прессования для устранения усадочной пористости, чем из сплавов на основе меди и железа.  [c.94]

Развитие межкристаллитной пористости в меди происходит только при наличии оксидов по границам зерен [1].  [c.17]

Однако даже бескислородная медь непрерывного литья может иметь внутренние дефекты раковины и пористость, а также трещины после горячей прокатки [1].  [c.18]

Сп, 100 (высокий) Пластики (полистирол, оргстекло, резина, поливинилхлорид, синтетические смолы) Пластики с наполнителями и резиной, вулканизированная резина, дерево Литье высоколегированная сталь, серый чугун, медь, цинк, латунь, бронза Неметаллы пористая керамика, горные породы 0—0,1  [c.196]

Металлокерамические вкладыши изготовляют прессованием и последующим спеканием порошков меди или железа с добавлением графита, олова или свинца. Особенностью этих материалов является большая пористость, которая используется для предварительного насыщения горячим маслом. Вкладыши, пропитанные маслом, могут долго работать без подвода смазочного материала. Их применяют в тихоходных механизмах в местах, труднодоступных для подвода масла.  [c.313]

Применяются различные способы нанесения на поверхность трубы пористого покрытия. Например, используется термодиффузионный процесс спекания металлического порошка определенной грануляции с основным металлом в водородной среде при повышенных температурах [137]. При газотермическом металлизационном напылении (электродуговом или газопламенном) расплавленный металл в виде частиц различной дисперсности наносят пульверизатором на холодную трубу, в результате чего образуется разветвленная система открытых пор i[62]. Авторы работы [62] исследовали теплоотдачу при кипении фреонов-11 н 12 на поверхности стальных труб с пористым покрытием из меди М-3. Перед нанесением пористого покрытия применялась дробеструйная обработка поверхности трубы металлическим песком с размерами зерен 0,9—1,2 мм. Опыты показали. что покрытие, нанесенное электродуговым способом, оказалось более эффективным по сравнению с газопламенным. Например, при р = 3,63-10 Па при среднем в этих опытах значении = 6000 Вт/м2 и толщине покрытия 0,235 мм а при кипении фреона-12 на пористой поверхности, нанесенной электродуговым способом, оказался в 4,5 раза больше по сравнению с а гладкой трубы. При тех же условиях на поверхности покрытия, нанесенного газопламенным способом, а увеличился по сравнению с а гладкой трубы только в 2 раза. Изменение толщины покрытия (нанесенного электродуговым способом) от бел = 0,075 мм до бел = 0,3 мм привело к увеличению а. При / = 6000 Вт/м и при бел = 0,3 мм отношение а при кипении на трубе с покрытием к а при кипении на гладкой трубе оказалось равным 5. Аналогичные результаты были получены и для фреонов-11 и 22.  [c.220]


Принимаем следующие параметры яроцесса / =0,1 м = 10 Вт/м в качестве охладителя используем воду с начальной температурой to = = 20 °С предельная температура стенки на выходе обогреваемого канала Т" = 120 °С проницаемой матрицей является волокнистая медь пористостью П = 0,6 и теплопроводностью П = 100 Вт/ (м К), вязкостный и инерционный коэффициенты сопротивления которой рассчитываются с помощью соотнощения из табл. 2.1 а = 2,57 10 /3 = = 9,1 10 П Затрачиваемая на прокачку охладителя мощность рассчитывается по формуле N = G8AP/p. Искомая величина отношения мощностей для сравниваемых вариантов может быть найдена следующим образом  [c.125]

Материалы на основе железа (пористое железо, железогра-фит) предназначены для работы в присутствии смазки, где требования по коррозионной стойкости не ограничиваются. Материалы на основе меди (пористая бронза, бронзографит) рекомендуют применять также в присутствии смазки, но при повышенной влажности или в условиях возможной коррозии. Они выпускаются некоторыми предприятиями в соответствии с техническими условиями министерств и ведомств.  [c.43]

Рис. 7.1. Зависимость в логарифмических координатах пористости слоя золота от толщины для обычных цианидных ванн нанесения золотого покрытия на медь. Пористость определяется количеством меди, растворенной в стандартных условиях в аммначно-персульфатаммониевом растворе Рис. 7.1. Зависимость в логарифмических координатах пористости слоя золота от толщины для обычных цианидных ванн нанесения <a href="/info/91157">золотого покрытия</a> на медь. Пористость определяется количеством меди, растворенной в <a href="/info/7422">стандартных условиях</a> в аммначно-персульфатаммониевом растворе
В морокой и других атмосферах, создающих проводящие плёнки влаги, разрушающее действие контактной пары проявляется примерно в зоне 5 см вокруг площади контакта. Рекомендуется применять в этой зоне диэлектрические разделители. Чтобы избе (ать вредного воздействия влаги,разделители долгшы поглощать не более I % влаги, быть без трещин и выбоин, отверстий и других несплошиос-тей, куда может затекать влага. Не следует прикреплять к пропитанным солями меди древесине иди йнере анодные по отношению к меди металлы и заделывать разнородные металлы в пористые материалы на близком расстоянии друг от друга, т.к. это может вызвать контактную коррозию (рис. 2.В).  [c.40]

При сварке латуней возможно испарение цинка (температура кипения 907° С, т. е. ниже температуры плавления меди). Образующийся окисел цинка ядовит, поэтому при сварке требуется хорошая вентиляция. Испарение цинка может привести к пористости металла шва. Это осложнение удается преодолеть нредва-  [c.344]

Порошковая металлургия позволяет получать композиционные материалы и детали, характеризующиеся высокой жаропрочностью, износостойкостью, стабильными магнитными и другими специаль-г(ыми свойствами. Возможность получения псевдосплавов из таких носплавляющихсл металлов, как медь—вольфрам, серебро—вольфрам и др., обладающих высокими электропроводимостью и стойкостью к злектроэроаиоиному изнашиванию, делает их незаменимыми для изготовления электроконтактных деталей. Пористые материалы в отдельных случаях становятся единственно приемлемыми для изго-  [c.417]

Металлокерамические вкладыши изготовляют прсс-сопаннем при вь[соких температурах порошков бронзы или железа с добавлением графита, меди, олова или свинца. Большим преимуществом таких вкладышей является высокая пористость. Поры занимают до 50,. , 30% объема вкладыша и используются как маслопроводящие каналы. Металлокерамический подшипник, пропитанный маслом, может в течение длительного времени работать без подвода емазки. По-  [c.284]

Конденсационная камера 1 и ячейки для термометров 2 просверлены в блоке 3 из высокочистой бескислородной меди, который помещается внутрл радиационного экрана 4, прикрепленного к основанию блока. Это устройство соединено с охлаждаемым газом теплообменником 5 и помещается внутри следующего радиационного экрана 6, также соединенного с теплообменником. Прокладки 7 из нержавеющей стали уменьшают тепловую связь блока с теплообменником. Все устройство помещается внутри вакуумной рубашки 8, подвешенной к верх-пему фланцу дьюара на тонкостенной нержавеющей трубке 9 диаметром 12,5 мм. Заполнение камеры осуществляется через трубку 10 из нержавеющей стали через радиационную ловушку // и дополнительную камеру с катализатором 12. Водород попадает в конденсационную камеру через пористый диск 13 пз нержавеющей стали. Манометрическая трубка 14 вводится в камеру через радиационную ловушку 15. Термометрические  [c.157]

Пористые высокогеплопроводные металлы используются также и при изготовлении теплообменников сосредоточенного теплообмена (дискретного типа) для получения сверхнизких температур. Предельно развитая поверхность теплообмена пористой структуры позволяет уменьшить граничное термическое сопротивление Калицы, вызывающее температурный скачок на границе раздела жидкость - твердое тело, через которую передается теплота. Такой теплообменник представляет собой блок, содержащий две камеры, заполненные проницаемым высокотеплопроводным материалом с большой удельной поверхностью Обьпшо и пористая матрица и блок выполняются из меди. При растворении Не в Не на пористой насадке в одной из камер температура получаемой смеси может понизиться до 0,011 К. За счет этого происходит охлаждение всего блока и протекающего через другую камеру потока Не .  [c.17]

Высокая чувствительность к вредному влиянию водорода. Расплавленная медь хорощо растворяет водород и при наличии в ней закиси меди СпаО подвержена водородной болезни . Сущность водородной болезни состоит в том, что водород, легко проникающий в расплавленную медь, реагирует с кислородом закиси меди с образованием водяных паров по реакции СпаО -Ь На ->-Си -f Н О. Водяные пары в данных условиях создают в затвердевшем металле больщое давление и вызывают появление волосяных трещин, которые могут привести к разрушению изделия. Кроме того, водород вызывает пористость сварных соединений в связи с различной растворимостью в расплавленной и твердой меди и образованием водяных паров.  [c.136]


Сплавы золота с медью или серебром сохраняют коррозионную стойкость золота, пока его содержание в сплаве превышает некоторое критическое значение, которое Тамман [1] назвал границей устойчивости. Ниже границы устойчивости сплав корродирует, например в сильных кислотах при этом нераство-ренным остается чистое золото в виде пористого металла или порошка. Такое поведение сплавов благородных металлов известно под названием избирательной коррозии и, очевидно, по характеру сходно с обесцинкованием сплавов медь—цинк (см. разд. 19.2.1).  [c.292]

Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25 °С D = 1,3-10" см с) 117], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцин-кованных слоев е-латуни (сплав Zn—Си с 86 ат. % Zn) и -у-латуни (сплав Zn—Си с 65 ат. % Zn) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным.  [c.334]

Образование пористой структуры переходного поверхностного слоя, обусловливающее вязкое разрушение материала, происходит не во всех случаях. Это характерно, в основном, для веществ с высокой энергией дефектов упаковки (высокочистый алюминий - 200 мДж/м , медь - 50 мДж/м ). Для таких веществ характерно образование ячеистой стрзтоуры дислокаций, формирующейся на стадий упрочнения. Образование и рост микропор происходит вдоль стенок дислокационных ячеек. Для сплава Си - 7% А] с низким значением дефектов упаковки (3 мДж/м ) отсутствие ячеистой структуры ограничивает образование мйкропор в процессе разрушения.  [c.130]

Для контактов с большими значениями разрываемой мощности используют метаплокерамические материалы. Заготовку прессуют из порощка вольфрама под больпшм давлением, спекают в атмосфере водорода, получая достаточно прочную, но пористую основу, которую затем пропитывают расплавленным серебром или медью для увеличения проводимости.  [c.29]

Предварительная ультразвуковая обработка мелкодисперсного устойчивого золя гидроокиси никеля- вызывает резкое увеличение катодной поляризащш в процессе осаждения никеля и увеличение плотности покрытия. Положительный эффект снижения пористости достигается при определенном соотношении времени обработки на аноде и катоде. Для каждого вида покрытия есть оптимальная величина соотношения, выбранная в соответствии с применяемым электролитом. Реверсивный ток используется для снижения пористости покрытий при оса>кдении меди, цинка, кадмия, никеля.  [c.68]

Преимуществами производства заготовок методами порошковой металлургии являются возможность применения материалов с разнообразными свойствами — тугоплавких, псевдосплавов (медь — вольфрам, железо — графит и др.), пористых (фильтры, самосмазывающиеся подшипники) и других малоотходность производства (отходы не превышают 1...5%) исключение загрязнения перерабатываемых порошковых материалов использование рабочих невысокой квалификации легкость автоматизации технологических процессов и др.  [c.175]

Металлокерамические вкладыши изготовляют прессованием при высоких температурах порошков бронзы или железа с добавкой графита, меди, олова или свинца. Большое преимуш ество таких вкладышей—высокая пористость, которая используется для насьвдения горячим маслом. Вкладыши, пропитанные маслом, могут долго работать без подвода смазки. Применяют в тихоходных механизмах в местах, труднодоступных для подвода масла.  [c.302]

Металлокерамика нашла достаточно широкое применение в электротехнике. Как уже отмечалось выше, этот материал применяется для изготовления контактов круглой, прямоугольной и сложной формы методом порошковой металлургии. Композиции получаются путем трехфазного спекания спрессованных из порошков заготовок либо путем пропитки серебром или медью предварительно опрессованных пористых каркасов из вольфрама или вольфрамоникелевого сплава. Удельное электрическое сопротивление металлокерамических контактов должно быть не более 0,07 мкО.м м при 20 °С, отличаться высокой стабильностью во времени и малой зависимостью от условий эксплуатации.  [c.131]

При кристаллизации под механическим давлением в результате большой скорости затвердевания, устранения газовой и усадочной пористости, измельчения структуры и уплотнения заготовок механические свойства меди и ее сплавов повышаются, но до определенного предела (рис. 64), при превышении которого они почти не повышаются. Для меди марки М3 этот предел соответствует 120—150 МН/м [86], для бронзы типа Си—10% Sn 50 МН/м [79], для меди Ml, латуни ЛМцА57-3-1 и бронзы Бр. АЖ9-4Л 150—200 МН/м значения оптимального давления близки к указанным выше и для других сплавов.  [c.126]

При отсутствии границ зерен в образцах даже загрязненная медд. пластична. Относительное сужение монокристаллов меди чистотой 99,996 99,99 99,95 и 99,7% при 20—700°С равно 100% [1]. Исследование ползучести бикристаллов меди в вакууме, кислороде и водороде установлено, что развитие межкристаллитной пористости происходит только при наличии оксидов по границам зерен. Однако в некоторых случаях введение кислорода в загрязненную медь может оказать положительное влияние.  [c.40]

Важное значение имеет применение пористых материалов для подачи анти-обледенительных жидкостей на участки поверхностп самолета, подвергающиеся опасности обледенения. Эти детали готовятся из порошков меди, никеля, олова. В настоящее время значительная часть самолетов оборудована такими анти-обледенительными устройствами.  [c.595]

Сталь — самосмазывающийся материал. Это сочетание применяется для сопряжений типа подшипников скольжения, шарниров и др. с ограниченной внешней смазкой и при относительно небольших скоростях скольжения, когда материал должен обеспечивать подачу смазки (жидкой или твердой) за счет своей структуры. Такими материалами могут являться пористые спеченные псевдосплавы, включающие медь, свинец, графит, а также различные типы пластмасс и металлопластмасс. Применяются также различного рода покрытия (в том числе биметаллические и полимерные) в сочетании со специальным рельефом поверхности.  [c.268]


Н Т Кудрявцев [4] разработал следующий процесс контактно-химического серебрения для нанесения покрытия на волноводные трубы и изделия сложной конфигурации из меди и ее сплавов. Предложен раствор следующего состава (г/л) 10 — Ag N 20 — Na N (свободного) и 10 — NaHsPOs при температуре 50 °С и контакте с алюминием Алюминий в виде проволоки помещают в пористую керамическую диафрагму с раствором, содержащим 20 г/л цианида натрия и 10 г/л гидроксида натрия, а затем вне раствора накоротко соединяют с покрываемым изделием  [c.84]

Золочение изделий, изготовленных из меди и латуни, а также стальных омедненных или латунированных деталей, можно осуществить с применением пористой диафрагмы и цинкового контакта. Цинковый электрод помещают в анолит-концентрированный раствор поваренной соли, а покрываемое изделие в католит следующего состава (г/л) золото в виде гремучего золота 1,2 железнстосинеро-дистый натрий (кристаллогидрат) 15,0. фосфат натрия двухзамещен-ный (кристаллогидрат) 7,5, углекислый натрий 4,0, сульфат натрия 0,15, температура раствора 70 С, продолжительность процесса  [c.86]

Травшпель 13 (8 г [Си(МНз)4 I l-j 100 мл Н2О). Этот разработанный Хейном [18] травитель широко применяют в настоящее время. Он дает хорошую картину травления даже при исследовании образцов после грубой шлифовки (рис. 14). Как правило, выпадает рыхлый и пористый осадок меди. При травлении сталей с большим содержанием углерода образующийся осадок меди может быть прочно сцеплен с поверхностью шлифа, особенно если шлиф подвергали тонкому шлифованию и полированию. В тех случаях, когда не удается стереть этот осадок протиркой поверхности шлифа, используют раствор аммиака. Чтобы травление было равномерным, образец после тщательного обезжиривания спиртом нужно быстро опустить в травитель во время травления шлиф следует перемещать. В результате повторного удаления губчатого осадка меди и погружения шлифа в раствор усиливается контрастность выявления [21 ]. Этот травитель дает надежные результаты, в основном, для мягких сталей, содержащих до 0,3% С. В высокоуглеродистых сталях наряду с окрашиванием в коричневый цвет обогащенных фосфором участков происходит окрашивание обо-50  [c.50]


Смотреть страницы где упоминается термин Медь пористая : [c.235]    [c.147]    [c.293]    [c.115]    [c.125]    [c.593]    [c.265]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.38 , c.40 ]



ПОИСК



Медиана

Пористость



© 2025 Mash-xxl.info Реклама на сайте