Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Охрупчивание металла

Сварка осуществима только в нижнем положении, после сварки рекомендуется проковка шва при температуре 550—800° С и последующее охлаждение в воде, так как быстрое охлаждение предотвращает сегрегацию Сн. О по границам зерен и охрупчивание металла.  [c.349]

Снижение циклической прочности при нанесении гальванических покрытий обусловлено главным образом водородным охрупчиванием металла детали и покрытия.  [c.306]

При высокой температуре в воздухе, азоте или водороде. Окисление на. воздухе протекает при температурах выше 450 С с образованием оксидов титана и нитридов. Температура воспламенения падает с повышением давления воздуха, что иногда приводит к локализованному выгоранию изготовленных из титанового сплава лопаток компрессоров газовых турбин [42]. Гидрид титана легко образуется при температурах выше 250 °С, а при более низких температурах — при катодном выделении водорода. Абсорбция кислорода, азота или водорода при повышенных температурах приводит к охрупчиванию металла.  [c.378]


В соляной кислоте любой концентрации при температурах вплоть до температуры кипения. Охрупчивание металла и более высокие скорости коррозии наблюдаются при температурах выше температур кипения под давлением (см. рис. 22.1).  [c.381]

Снижение степени охрупчивания металла сварных соединений или обеспечение заданных 7 kp,/(i< H достигается технологическими и металлургическими способами. Для низкоуглеродистых сталей — это ограничение q/v или высокий отпуск сварных соединений. Для легированных сталей технологические меры аналогичны применяемым для предотвращения холодных трещин. Весьма эффективны, например, металлургические методы. Легирование сталей Мо, Ni, снижение содержания вредных примесей (S, Р, О2, N2 и Н2) уменьшает их склонность к хрупким разрушениям. Стали ЭШП и ВДП и металл их сварных соединений имеют достаточно низкие значения Гкр  [c.547]

Для определения влияния среды на свойства металла образцы до и после экспозиции в среде наряду с гравиметрическими измерениями могут быть подвергнуты металлографическим исследованиям и механическим испытаниям. К наиболее простым механическим испытаниям относится оценка степени охрупчивания металла методом перегиба стальных проволочных образцов на приборе НГ-1-Зм по ГОСТ 1579—80.  [c.85]

Длительная выдержка напряженных образцов в агрессивных метанольных средах с последующим испытанием на воздухе приводит к появлению хрупкого транскристаллитного разрушения, имеющего все признаки коррозионного растрескивания. Вместе с тем имеются данные, по которым длительная выдержка в метанольных растворах не способствует охрупчиванию металла при последующих испытаниях на воздухе. Эти противоречия можно объяснить тем, что в одних опытах при выдержке в метанольных растворах создавалось такое нагружение, при котором происходило разрушение защитной оксидной пленки. Это создавало  [c.79]

Если выдержку в метанольных растворах осуществляли так, что защитная пленка оставалась неповрежденной, ни коррозионного растрескивания, ни наводороживания не возникало, соответственно не было и охрупчивания металла при последующем испытании на, воздухе.. Об этом свидетельствуют опыты па коррозионному растрескиванию в метанольных растворах образцов, предварительно нагруженных на воздухе. Если образцы изогнуть на воздухе при достижении напряжений 0,7 выдержать в напряженном состоянии в течение 2 ч в 10 %-ном растворе НМОз для создания на поверхности плотной бездефектной оксидной пленки, а затем поместить в агрессивный метанольный раствор, разрушения не произойдет. Если же образцы загнуть непосредственно в метанольном растворе, произойдет коррозионное разрушение.  [c.79]


Рис. 7.32. Схема возникновения охрупчивания металла в результате агрессивного воздействия среды и возникновение динамического деформационного упрочнения в связи с формированием полос скольжения [123] Рис. 7.32. Схема <a href="/info/167461">возникновения охрупчивания</a> металла в результате <a href="/info/275167">агрессивного воздействия</a> среды и возникновение динамического <a href="/info/38182">деформационного упрочнения</a> в связи с формированием полос скольжения [123]
В работах [77, 103—104] охрупчивание металла в процессе усталости исследовалось по изменению таких характеристик, как хрупкая прочность и критическая температура хрупкости, которые определяются при жестких условиях нагружения высокая концентрация напряжений, статическое либо удар-  [c.80]

Преимущественное выделение фазы по границам зерен приводит к слиянию образующихся трещин, вызывая охрупчивание металла шва и снижение его прочности.  [c.149]

Плотность и прочность корпусов, сварных и других соединений должна быть гарантированной в течение 200 тыс. ч работы (или 30 лет) с учетом условий постепенного охрупчивания металла под действием радиоактивного облучения. Это требование исходит из необходимой радиационной безопасности работы АЭС.  [c.237]

Для полной защиты потенциал должен достигнуть значения Однако столь глубокая поляризация экономически нецелесообразна, так как идущее с большой скоростью выделение водорода требует повышенных затрат электроэнергии. Кроме того, выделяющийся водород способствует охрупчиванию металла и отслоению защитных покрытий.  [c.57]

В результате сталь обезуглероживается. Образующийся метан располагается преимущественно по границам зерен. Он вызывает охрупчивание металла. При содержании водорода более 12 см на 100 г металла вместо типичного для пластичных материалов вязкого разрушения наблюдается хрупкое.  [c.182]

Температурная зависимость кинетики роста трещин не установлена, хотя такие измерения могут быть полезными при исследовании процессов в жидких металлах. В работе [160] установлена температурная зависимость охрупчивания металла твердым кадмием и получено значение кажущейся энергии активации 56,7 кДж/моль. В результате сделан вывод, что эта величина может служить доказательством того, что диффузия кадмия в твердом состоянии есть стадия, контролирующая скорость процесса. Однако зависимости v от К не были определены, поэтому сравнения не могут быть сделаны при одинаковых скоростях роста трещин.  [c.405]

При выходе на поверхность металла скоплений дислокаций могут возникать трещины. Проникновение среды в трещины приводит к расширению их и охрупчиванию металла. Адсорбционное воздействие жидких металлов на Твердые изучено недостаточно, и исследования в этом направлении продолжаются.  [c.144]

В атомных энергетических установках под действием нейтронного облучения происходит охрупчивание металла и повышение температуры перехода его в хрупкое состояние. Степень повреждаемости металла с увеличением его толщины повышается. Здесь преимущество многослойных стенок очевидно.  [c.21]

Способ нанесения надреза влияет также на величину остаточных пластических деформаций в окрестности надреза. При выполнении надреза фрезой или резцом такие пластические деформации практически отсутствуют. В случае нанесения прессованного надреза имеют место локальные пластические деформации. Для определения их характера и величины на боковые поверхности образца в месте надреза алмазной пирамидкой с помощью микроскопа МПИ-2 наносили сетку с шагом 0,5 мм и измеряли искривления сетки после вдавливания пуансона (рис. 2). Замеры показали, что в процессе вдавливания пуансона деформация металла направлена нормально к его граням. В результате перемещения металла по направлениям, нормальным к боковым граням пуансона, в основании надреза возникает зона растягивающих напряжений. Измерениями установлено, что на глубине 0,25 мм от дна надреза местные пластические деформации растяжения достигают 10—12 %. Происходит локальное охрупчивание металла, причем глубина зоны охрупчивания достигает 2 мм, что способствует зарождению хрупкого разрушения.  [c.223]


Низкие скорости охлаждения околошовпой зоны при электро-шлаковой сварке приводят к длительному пребыванию ее в области высоких температур, вызывающих рост зерна и охрупчивание металла. Поэтому после алектрошлаковой сварки низколегированных сталей с повышенным содержанием углерода и среднелегированных высокопрочных сталей необходима высокотемпературная термообработка сваренных изделий для восстановления механических свойств до необходимого уровня. Время с момента окончания сварки до проведения термообработки должно быть регламентировано.  [c.257]

При более высоких температурах титан активно соединяется с Тазами с образованием стойких оксидов, нитридов, гидридов и карбидов, снижа-ющих прочность и вызывающих охрупчивание металла. Процесс усиливается, если металл находится под действием напряжений.  [c.187]

Несущую способность прессовых соединений можно повысить также металлизацией и термодиффузионным насыщением (например, горячим цинкованием), которое в отличие от гальванических покрытий не вызывает водородного охрупчивания металла. Дальнейшего повышения несущей спо-. собности можно достичь нанесением разнородных покрытий, например цинкового покрытия на одну поверхность и медного на другую. В результате взаимной диффузии атомов металлов можно ожидать образования в зоне контакта промежуточных структур более высокой прочносш, чем металлы однородных покрытий (например, сплавов типа латуней при сочетании цинкового и медного покрытий).  [c.485]

Сварочные материалы наряду с окислителями могут содержать вредные компоненты — серу и фосфор, так как они являются причиной горячих трещин и охрупчивания металла шва. Сера, соединяясь с железом, образует сульфид железа РеБ. Металл очищают от серы, вводя более активный элемент, чем свариваемый металл, по реакции РеБ+Мп Ре+Мп5. Сульфид марганца менее растцорим в стали, чем сульфид железа, что вызывает перераспределение серы из расплавленного металла в шлак.  [c.28]

В кислороде, азоте или водороде при повышенных TeSwepa-турах. Скорость окисления на воздухе становится существенной при температурах выше 250 °С. Катодное выделение водорода на тантале приводит к охрупчиванию металла при комнатной температуре.  [c.384]

Сварные соединения стальных конструкций в ряде случаев склонны к хрупкому разрушению в условиях работы при отрицательных температурах и условиях динамического нагружения. Этому способствует охрупчивание металла в ЗТВ вследствие воздействия СТДЦ, а также наличия геометрических концентраторов напряжений и остаточных сварочных напряжений. В соединениях низкоуглеродистых сталей наиболее склонны к хрупкому разрушению участки ЗТВ, нагреваемые до 470...770 К. Их охрупчивание связано с деформационным старением стали.  [c.546]

Исследования показали, что по химическому составу металл отливки корпуса задвижки соответствовал стали А-352 1СВ по АЗТМ и в зоне разрушения находился в охрупченном состоянии ударная вязкость КСУ 4д при пониженной температуре составляла 12 Дж/см , относительное удлинение 8 — 23,8%. Металл имел ферритно-перлитную структуру с крупными равноосными зернами и включениями карбидов внутри зерен феррита. Охрупчивание металла отливки в зоне разрушения было вызвано наличием усадочных межкристаллитных несплошностей и проявлением водородной хрупкости. По значениям прочности, твердости и относительного сужения металл отвечал требованиям нормативных документов к отливкам, предназначенным для эксплуатации в средах с высоким содержанием сероводорода. Разрушение стенки корпуса задвижки произошло в результате быстрого развития трещин, образовавшихся в металле под воздействием напряжений, превышающих предел текучести, в зоне расположения усадочных несплошностей. Наличие высоких напряжений в металле в момент, предшествовавший разрушению, подтверждалось тем, что в зоне зарождения и нестабильного роста трещин преобладал вязкий характер разрушения. Характер излома корпуса задвижки в зонах зарождения и докритического роста трещины смешанный, а в зоне лавинообразного разрушения — хрупкий с шевронным узором. Охрупчивание металла, вызванное его пониженной ударной вязкостью, способствовало лавинообразному развитию разрушения. На гболее вероятной причиной разрушения задвижки явилось, по-видимому, размораживание ее корпуса.  [c.52]

Из табл. 44 следует, что значения критериев в среде NA E ближе к требованиям теории замедленной рекомбинации. Напротив, при дозировании ингибиторов в коррозионной среде величины критериев больше соответствуют расчетным значениям теории замедленного разряда, то есть в данном случае катодное выделение водорода лимитирует стадия разряда. Таким образом, в присутствии ингибиторов наблюдается выгодная с точки зрения снижения скорости коррозии и наводорожи-вания металла инверсия лимитирующей стадии катодного выделения водорода, которая способствует снижению его окклюзии и, соответственно, охрупчиванию металла.  [c.300]

При нагреве никеля и его сплавов в атмосфере, содержащей серу, последняя диффундирует в металл и, образуя соединение NiaSj, способствуют охрупчиванию металла. Всего лишь 0,005 % S достаточно для того, чтобы металл стал хрупким. Поэтому химический состав в пламенных печах должен быть абсолютно чист по сере.  [c.525]

Рассмотрим теперь задачу определения параметров сопротивления материала росту трещин при наличии водорода, позволяющих установить связь между поведением лабораторных образцов в процессе испытаний и поведением материалов в конструкциях при тех же условиях. Заметим, что обычные методы механики разрушения [144] при изучении водородного охрупчивания металлов не являются корректными. Так, анализируя типичные результаты опытов по оценке влияния водорода на кратковременную статическую трещиностойкость металлов [200] (рис. 41.1), нетрудно установить, что определяемый стандартным методом параметр трещиностойкости Kq, будучи весьма чувствительным к воздействию водорода [83, 2(30, 319, 334J, является лишь одним значением коэффициента К из интервала К,ь < Ксш, в кото-  [c.326]


В настоящее время нет единой точки зрения о приоритете того или другого механизма в процессе коррозионного растрескивания. Выводы о ведущей роли одного из процессов в вершине трещины в большинстве работ носят, как правило, альтернативный характер. Обосновывая ведущую роль одного из механизмов, авторы не обсуждают или отвергают возможность разрушения при коррозионном растрескивании по любому другому механизму. Так, Дж. Скалли [60] даже вводит новое понятие— водородное растрескивание, относящееся к сплавам, которые разрушаются под напряжецием в коррозионной среде вследствие внедрения атомов водорода в кристаллическую решетку. До недавнего времени для выяснения механизма коррозионного растрескивания считалось достаточным изучить влияние поляризации при одних и тех же условиях нагружения на скорость разрушения. Если анодная поляризация, активирующая растворение у вершины трещины, приводит к уменьшению времени до разрушения, а катодная поляризация, наоборот, снижает скорость роста коррозионной трещинь), значит, коррозионное растрескивание протекает в основном по механизму локального анодного растворения. Если же катодная поляризация ускоряет разрушение, а анодная, наоборот, его задерживает или замедляет, ведущим процессом при коррозионном растрескивании является проникновение водорода в кристаллическую решетку и связанное с этим охрупчивание металла в вершине трещины.  [c.58]

В рассматриваемых реакциях вследствие пирогидролиза хлористого титана происходит образование соляной кислоты, которая поддерживает в активном состоянии поверхность титана в местах разрушения окисной пленки, способствует процессам локального растворения и насыщения металла водородом. Чем больше химическая гетерогенность металла, тем более интенсивно протекают процессы локального растворения и тем активнее происходит насыщение металла водородом. При этом следует иметь в виду, что склонность к водородной хрупкости при нагружении металла в области температур 250—500°С существенно отличается от хрупкости при 20°С. При температурах горячесолёвого растрескивания выделения гидридов, по-видимому, не происходит из-за очень высокой растворимости водорода в металле, и сами гидриды не могут проявить хрупкость при данных температурах. Водородная хрупкость в этом интервале температур возможна лишь при сравнительно высоких концентрациях водорода как обратимая водородная хрупкость, связанная с повышенной концентрацией водорода на границах зерен. Эта концентрация способствует возникновению локального вязкого течения и соответственно охрупчиванию металла.  [c.77]

Характер изменения механических свойств коррелирует с микроструктурными изменениями. К расчетному сроку эксплуатации труб из стали 12Х1МФ микроструктура становится для 70—80% труб феррито-карбидной, а механические свойства нередко снижаются ниже допустимых величин. Ориентировочным критерием оценки по механическим свойствам металла пароперегревателей из стали 12Х1МФ после 100 тыс. ч эксплуатации можно считать снижение предела прочности до 420—440 МПа и относительного удлинения до 15—18%. Для стали 12Х18Н12Т за критерий надежности можно брать снижение относительного удлинения до 18—20%, что свидетельствует о значительном охрупчивании металла.  [c.217]

Аварийные повреждения магистральных нефтепроводов внешне характеризуются большим разнообразием (по основному металлу, по заводскому шву, по монтажным швам, в различных точках трубы и тройниковых соединений). Также различны и сроки эксплуатации до возникновения аварий от нескольких месяцев до десятка лет. Однако пояти все нарушения имеют общие признаки. Если исключить случаи явных дефектов и брака, то можно считать, что большая часть аварий происходит без видимых причин и часто при давлениях ниже рабочих. Отсутствуют пластические макродеформации по периметру трубы и у кромок в местах максимального раскрытия трещин в центральной части разрыва, а разрушения часто имеют очаговый характер. Механические свойства металла, в том числе твердость и ударная вязкость, в очаговых зонах (длиной порядка 150—250 мм) остаются прежними, и охрупчивания металла из-за потери свойств (старение, наводоро-живание) не происходит. Это значит, что если бы разрушение было чисто механическим и вызывалось однократной (статической) нагрузкой, то должны были бы произойти значительные пластические макродеформации, чего на самом деле нет. Такие остаточные деформации с утонением стенки трубы проходят на остальном протяжении разрыва в зоне механического дорыва косым срезом, распространяющегося в обе стороны от очага разрушения. Таким образом, четко различаются две зоны — зона зарождения (очага) разрушения и зона разрыва (рис. 97).  [c.222]

Хрупкие разрушения металла подогревателя со стороны греющего пара отмечались при работе блоков на нейтрально-окислительном водном режиме [91. Змеевики и перегородки пароохладителей поврежденных ПВД были покрыты слоем легкоотслаива-ющихся продуктов коррозии (до 4 мм). Наблюдалось охрупчивание металла и его обезуглероживание в зоне повреждений, причем наименьшее количество углерода обнаружено в металле, контактирующем с паром. В нем обнаружено также повышенное содержание водорода. Основная причина этого— коррозия с водородной деполяризацией, вызванная действием пузырьков диоксида углерода, прилипаемость которых способствует упариванию  [c.173]

В зависимости от свойств и термодинамического состояния системы деформируемый металл — среда снижение сопротивления усталостному разрушению металла может быть следствием проявленйя адсорбционного эффекта, электрохимического растворения анодных участков или охрупчивания металла вследствие наводороживания. Чаще указанные факторы действуют на металл комплексно и их трудно разделить. Однако, если превалирующее действие оказывает адсорбционный фактор, то процесс разрушения металла при одновременном действии на него циклических напряжений и рабочей среды принято называть адсорбционной усталостью, еспм снижение сопротивления усталости связано с наводоро-живанием металла — водородной усталостью, а если проявляется чисто электрохимический фактор — коррозионной усталостью. Обычно под коррозионной /сталостью подразумевают процесс усталостного разрушения металла в присутствии коррозионной среды вообще.  [c.15]

При больших температурах и давлениях водород реагирует с углеродом, находящимся в растворе, по реакции 4Н-1-С=СН4 или с углеродом, находящимся в карбидах, по реакции 4Н-1-РезС= =ЗРе- -СН4. В результате сталь обезуглероживается. Образующийся метан располагается преимущественно по границам зерен. Он также вызывает охрупчивание металла.  [c.258]

Сварные швы аустенитных сталей непосредственно после сварки обладают высокими механическими свойствами. Однако в результате теплового старения при температуре 350—875° С может произойти резкое падение ударной вязкости и снижение пластических свойств металла шва. Охрупчивание металла может явиться результатом выпадения вторичных карбидов по границам кристаллов и образования сигма-фазы при температуре 350—550 С. Для аустенитно-ферритных швов наиболее опасна температура 650—700° С, для чистоаустенитных 800—850° С.  [c.146]


Смотреть страницы где упоминается термин Охрупчивание металла : [c.288]    [c.289]    [c.45]    [c.43]    [c.122]    [c.49]    [c.25]    [c.278]    [c.433]    [c.388]    [c.231]    [c.124]    [c.390]    [c.19]    [c.287]   
Ингибиторы коррозии (1977) -- [ c.300 ]



ПОИСК



Влияние факторов качества металла на его сопротивляемость водородному охрупчиванию

Водородное охрупчивание металла экранных труб

Охрупчивание

Охрупчивание аустенитного металла шва, содержащего феррит, в результате выделения о-фазы

Охрупчивание в жидких металлах

Охрупчивание металла в процессе усталости

Охрупчивание металлов конструкций

Охрупчивание металлов под действием жидких припоев

Охрупчивание паяемого металла в контакте с жидким припоем. Методы оценки



© 2021 Mash-xxl.info Реклама на сайте