Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинематическая ара поступательная

Кинематически поступательное движение фигуры, в частности кривой, характеризуется тем, что все ее точки имеют одинаковые скорости.  [c.192]

В приспособлениях (рис. 61) для заточки червячных фрез винтовое движение фрезы создается кинематически поступательное движение стола преобразуется во вращательное реечной передачей. Шаг винтовых канавок настраивается посредством поворота копир-ной линейки на угол б.  [c.124]

Определить класс кинематической пары, образованной звеньями I и 2. Указать, какие из шести независимых движений (трех поступательных и трех вращательных) одного звена относительно другого невозможны в кинематической паре.  [c.8]


Установить основное кинематическое назначение механизма. Например, механизм на рис. 7 предназначен для преобразования вращательного движения кулачка / в поступательное движение толкателя 3.  [c.15]

Рис. 10. Схематическое изображение неподвижных элементов кинематических пар а) и б) — вращательная кинематическая пара, в) поступательная пара, г) высшая пара. Рис. 10. <a href="/info/286611">Схематическое изображение</a> неподвижных <a href="/info/243417">элементов кинематических</a> пар а) и б) — <a href="/info/4968">вращательная кинематическая пара</a>, в) <a href="/info/61692">поступательная пара</a>, г) высшая пара.
В поступательной кинематической паре (рис. 55) реакция Рц, со стороны звена I на звено k отклоняется от нормали пп к плоскости касания элементов пары на угол треиия ф в сторону, противоположную относительной скорости Ощ звена k по отношению к звену i.  [c.96]

Рис. 59. Определение мощности, затрачиваемой на преодоление трения в поступательной кинематической паре. Рис. 59. <a href="/info/108236">Определение мощности</a>, затрачиваемой на преодоление трения в поступательной кинематической паре.
Подлежит определению реакция в поступательной кинематической паре С, которая направлена перпендикулярно линии Ах реакция Р. во вращательной паре С реакция Я,2 вращательной паре В реакция ВО вращательной паре А н уравновешивающий момент /Иу, приложенный к звену /.  [c.104]

Рассмотрим, какие же общие ограничения наложены на движения всех звеньев приведенного выше механизма условием параллельности осей всех кинематических пар. Звенья механизма не могут совершать вращательное движение вокруг осей у и г, поступательное движение вдоль оси х, т. е. из шести возможных  [c.38]

Как было показано выше, плоские механизмы могут иметь звенья, входящие как в низшие, так и в высшие пары. При изучении структуры и кинематики плоских механизмов во многих случаях удобно заменять высшие пары кинематическими цепями или звеньями, входящими только в низшие вращательные и поступательные пары V класса. При этой замене должно удовлетворяться условие, чтобы механизм, полученный после такой замены, обладал прежней степенью свободы и чтобы сохранились относительные в рассматриваемом положении движения всех его звеньев. Рассмотрим трехзвенный механизм, показанный на рис. 2.19. Механизм состоит из двух подвижных звеньев 2 и 5, входящих во вращательные пары V класса Л и В со стойкой / и высшую пару С IV класса, элементы звеньев а w Ь которой представляют собою окружности радиусов ОаС и 0J2. Согласно формуле (2.5) степень свободы механизма будет  [c.44]


Рассмотрим некоторые пространственные механизмы, применяемые в технике. На рис. 2.26, а показан четырехзвенный механизм А B D выдвигающегося шасси самолета. Ползун 2 движется по неподвижной направляющей 1 и шатуном 5 передает движение опоре 4 колеса, которая поворачивается вокруг оси D неподвижного звена 1. Звенья 2 к 1 образуют поступательную пару, звенья 2 и 3 и 3 ц 4 — шаровые пары и звенья- 4 и 1 — вращательную пару. Кинематическая схема механизма показана на рис. 2.26, б. Из рассмотрения механизма видно, что звено 3  [c.47]

Далее, кинематическая цепь EG состоит из двух звеньев 4 к 5, входящих в две вращательные кинематических пары Е ч F и одну Q поступательную пару (ползун 6 и неподвижная направляющая). Степень свободы этой цепи равна  [c.54]

Пример 2. На рис. 3.21, а показана кинематическая схема кулачкового механизма двигателя. Кулачок 2, вращаясь вокруг оси А, действует на ролик 3, сидящий на качающемся рычаге 4. Рычаг 4 роликом Б передает движение клапану 6, движущемуся в направляющих F. Механизм состоит из пяти подвижных звеньев, четырех вращательных пар V класса, одной поступательной пары  [c.62]

Трение в поступательной кинематической паре  [c.218]

ТРЕНИЕ В ПОСТУПАТЕЛЬНОЙ КИНЕМАТИЧЕСКОЙ ПАРЕ 219  [c.219]

Рассмотрим, как будут направлены реакции в различных кинематических парах плоских механизмов. Во вращательной паре V класса результирующая сила реакции F проходит через центр шарнира (рис. 13.1). Величина и направление этой реакции неизвестны, так как они зависят от величины и направления заданных сил, приложенных к звеньям пары. В поступательной паре V класса (рис. 13.2) реакция перпендикулярна к оси движения X — X этой пары. Она известна по направлению, но неизвестны ее точка приложения и величина. Наконец, к высшей паре IV класса (рис. 13.3) реакция F приложена в точке С касания звеньев / и 2 и направлена по общей нормали п — /г, проведенной к соприкасающимся профилям звеньев / и 2 в точке С, т. е. для высшей пары IV класса нам известны направление реакции и ее точка приложения.  [c.247]

Рис. 13,2, Схема поступательной кинематической пары Рис. 13,2, Схема поступательной кинематической пары
Переходим к рассмотрению группы II класса второго вида (рис. 13.7, а). Эта группа имеет одну крайнюю поступательную пару В в осью X — х. На группу действуют внешние силы F и F-i и пары с моментом и М . Реакции в кинематических парах могут быть определены методом планов сил. Векторное уравнение равновесия всех сил, действующих на группу (рис. 13.7, а), имеет следующий вид  [c.252]

На рис. 27.1 показана схема механизма поперечно-строгального станка, в котором при равномерном движении входного звена 1 суппорт 2 совершает возвратно-поступательное движение с ускоренным обратным ходом, причем во время рабочего хода движение суппорта 2 должно быть приближенно равномерным. При синтезе этого механизма параметры кинематической схемы подбираются таким образом, чтобы на рабочем участке движения суппорта скорость его мало отличалась от постоянной величины, что важно для сохранения постоянной скорости обработки заготовки.  [c.551]

Наиболее распространены следующие подвижные соединения, т. е. кинематические пары с относительным вращательным, поступательным и винтовым движением. Эти пары образованы охватывающей и охватываемой поверхностями.  [c.322]

X, у,, м — координаты неподвижных элементов вращательных или поступательных кинематических нар п прямоугольной системе  [c.21]

Во вращательной паре подлежат определению величина и направление реакции, так как ее линия действия проходит через ось вращения пары. В поступательной паре подлежат определению величина и точка прилоокения реакции, так как известно только то, что направление реакции всегда перпендикулярно оси направляющих пары. В высшей кинематической паре (паре IV класса) подлежит определению только величина реакции, так как реакция направлена по общей нормали к кривым, образующим пару, и приложена в точке их касания.  [c.104]


Z. Таким образом, в общем случае, твердое тело обладает в пространстве шестью видами независимых возможных движений тремя вращениями вокруг осей х, у, г и тремя поступательными движениями вдоль тех же осей. Поэтому, если бы на движение первого звена кинематической пары, принятого за абсолютно твердое тело, не было наложено никаких условий связи, движение такого звена могло бы быть представлено состоящим из шести вышеуказанных движений относительно выбранной системы координат хуг, связанной со вторым звеном. Как уже сказано выше, вхождение звена в кинематическую пару с другим звеном налагает на относительные движения этих звеньев условия связи. Очевидно, что число этих условий связи может быть только целым и должно быт , меньше шести, так как уже в том случае, когда число условий связи равняется шести, звенья теряют относительную подвижность и кинематическая пара переходит в жесткое соедн[ еиие двух звеньев. Точно так же число условий связи не мо кет быть меньншм единицы, ибо в том случае, когда ч сло условий СВЯЗИ рзвно нулю, звенья не соприкасаются, и, слсловательио, кинематическая пара перестает существовать в таком случае мы имеем два тела, движущиеся в пространстве одно независимо от другого.  [c.22]

Связи, наложенные на относительное движение звена кинематической пары, ограничивают те возможные относительные движения, которыми обладают звенья в свободном состоянии. В результате этих ограничений некоторые из шссти возможных относительных движений свободно движущегося звена становятся для него связанными. Например, соответствующим подбором соприкасающихся элементов звеньев можно устранить возможность одного из вращений вокруг какой-либо оси или одного из поступательных движений вдоль какой-либо оси, или одновременно одЕюго из вращений и одного поступательного движения и т. д.  [c.23]

Оставшиеся возможные движения могут быть или независимыми друг от друга, или же быть одно с другим связаны какими-нибудь дополничельными 1еометрическими условиями, устанавливающими функциональную связь между движениями. Например, в кинематической паре винта и гайки (винтовой паре) вращение винта вокруг оси вызывает его поступательное движение, причем оба эти движения связаны определенной аналитической зависимостью.  [c.23]

На рис. 1.8 показана кинематическая пара V класса, каждое из зве 1ьев которой обладает только одним возможным простейшим движением, а именно, поступательным движением вдоль оси X,  [c.25]

Рассмотренные выше кинематические пары относились к нарам, для кото-ррлх мгновенные возможргые движения их звеньев не зависят друг от друга. Однако в технике встре инотся кинематические пары, для которых относительные движения их звеньев связаны какой-либо дополнительной геометрической зависимостью. В качестве примера рассмотрим один вид такой пары, наиболее часто встречающейся в механизмах. Пусть, например, относительные движения звеньев пары IV класса, показанной на рис. 1.9, связаны условием, что заданному углу (р поворота одного звена относительно другого вокруг оси лг—л соответствует поступательное перемещение h вдоль той же оси. В этом случае, хотя звенья пары имеют и поступательное, и вращательное движения, эти движения связаны условием  [c.26]

Рис. I.t4, Схематические изображения поступательной пары с одним неподвижным звеном а) изоОражепие со схематизированными конструктивными формами 6) изображение применяемое на кинематических схемах в) изображение с направляющей в виде паза г) и ( ) изображения, применяемые на кинематических схемах Рис. I.t4, <a href="/info/286611">Схематические изображения</a> <a href="/info/61692">поступательной пары</a> с одним <a href="/info/253525">неподвижным звеном</a> а) изоОражепие со схематизированными <a href="/info/428316">конструктивными формами</a> 6) изображение применяемое на <a href="/info/2012">кинематических схемах</a> в) изображение с направляющей в виде паза г) и ( ) изображения, применяемые на кинематических схемах
Рис. 2.25. Схемы распространенных кинематических пар а) изображение нращателыюй пары со схематизированными конструктивными формами а ) схематическое изображение вращательной пары, применяемое на кинематических схемах 6) я б ) то же для поступательной пары в) и в ) то же для винтовой пары г) и г ) то же для цилиндрической пары д) ид ) то же для шаровой пары е) и в ) то же для шаровой с пальцем пары Рис. 2.25. Схемы распространенных кинематических пар а) изображение нращателыюй пары со схематизированными <a href="/info/428316">конструктивными формами</a> а ) <a href="/info/286611">схематическое изображение</a> <a href="/info/61685">вращательной пары</a>, применяемое на <a href="/info/2012">кинематических схемах</a> 6) я б ) то же для <a href="/info/61692">поступательной пары</a> в) и в ) то же для <a href="/info/2284">винтовой пары</a> г) и г ) то же для <a href="/info/444971">цилиндрической пары</a> д) ид ) то же для <a href="/info/85322">шаровой пары</a> е) и в ) то же для шаровой с пальцем пары
Рис. 6.3. Кулачковый механизм с вращающимся кулачком и поступательно движущимся толкателем, направление движения которого проходит через центр вращения кулачка5 а) кинематическая схема 6) график пути толкателя Рис. 6.3. <a href="/info/1927">Кулачковый механизм</a> с вращающимся кулачком и поступательно движущимся толкателем, <a href="/info/477134">направление движения</a> которого проходит через <a href="/info/9306">центр вращения</a> кулачка5 а) <a href="/info/2012">кинематическая схема</a> 6) <a href="/info/14833">график пути</a> толкателя

Переменные параметры, с помощью которых мы определяем положение системы, как известно, носят название обобщенных координат. В открытой цепи в качестве обобщенных координа Qi, q ,. .., q-n следует выбирать лннейные ц угловые величины, которые определяют взаимное расположение звеньев кинематических пар цепи. Для поступательной пары это изменяемый размер / вдоль оси пары, а для вращательной пары — это угол относительного поворота звеньев пары k и k—. Так, например, в качестве обобщенных координат qi,  [c.178]

Рассмотрим теперь, как может быть определена в общем случае реакция в кинематической паре, в которую входит со стойкой начальное звено. Зто звепо обычно входит со стойкой или в поступательную пару V класса или во вращательную пару  [c.260]

Внутри каждого вида кулачковых механизмоч мы можем получить раз. и-1ные разновидности этих механизмов в зависимости от характера движения кулачка, взаимного расположения кулачка и выходного звеня, геометри еских форм элемента, принадлежащего выходному звену. Например, кулачковые механизмы с поступательно движущимся звеном вида, показанного на рис. 26.1, а, могут иметь различные кинематические схемы, показанные на рис. 26.2, так как кулачок может вращаться вокруг неподвижной осп Л (рпс. 26.2, а, б и в) или двигаться поступательно (рис. 26.2, г и д) в.доль оси х — х и т. д. Ось у — у выходного звена может пересекать ось А вращен я кулачка (ркс. 26.2, а) и не пересекать ее (рис, 26.2, в), образуя некоторое кратчайшее расстояние, равное I. Ось у — у движения звена 2 может быть перпендикулярна к оси х — х движения кулачка (рис. 26.2, г) или образовать некоторый угол а с осью х — х (рис. 26.2, д). Наконем, выхол.ное звено может оканчиваться точкой С (острием) (рис. 26.2, а и г), круглым роликом <3(рис. 26.2, в и <Э) или прямой а а (плоской тарелкой) (рис. 26,2,6).  [c.511]

Конструктивные присоединительные элементы с подвижным контактом образуют подвижные соединения, иапри-мер зубья зацеплений, элементы деталей подшипников каче-Г1ИЯ, элементы направляющих прямолинейного движения, поверхности кулачков и толкателей и т. п. Все такие элементы составляют кинематические пары поступательные, вращательные, винтовые и др. В подвижных соединениях сопряженные элементы обеспечивают взаимную ориентацию сопря-гаемых деталей и передачу усилий при их относительном движении по заданному закону. Изображения таких пар см. 17 Изображения соединений деталей . Размеры формы таких ). 1е ептов выгюлняются, как правило, с высокой точностью, поэтому па рабочих чертежах эти размеры имеют малые допуски.  [c.135]

Кннеметическая схема кривошипного пресса простого действия аналогична схеме кривошипного пресса для объемной штамповки (см. рис. 3.28). Пресс двойного действия для штамповки средне-и крупногабаритных деталей имеет два ползуна, внутренний (к нему крепят пуансон) и наружный (приводит в действие прижим). Внутренний ползун, как у обычного кривошипного пресса, получает возвратно-поступательное движение от коленчатого вала через шатун. Наружный ползун получает движение от кулачков, закрепленных на коленчатом валу, или системы рычагов, связанных с коленчатым валом. Кинематическая схема пресса такова, что наружный ползун обгоняет внутренний, прижимает фланец заготовки к матрице и остается неподвижным в процессе деформирования заготовки пуансоном, перемещаюш,имся с внутренним ползуном. После окончания штамповки оба ползуна поднимаются.  [c.112]

У механизма с коромыслом заклинивание происходит при больших углах давления, чем у механизмов с ноступательпо движущимся тoJП aтeлeм. Следовательно, при прочих равных условиях размеры кулачка будут меньшими (уменьшатся реакции в кинематических парах, интенсивность изнашивания и расход потребляемой энергии, рис. 2.16, я, е, ж). В тех случаях, когда рабочий орган совершает поступательное движение и мо кет быть укреплен иа выходном звене, выбирается схема кулачкового механизма с поступательно движущи.мся толкателем.  [c.49]


Смотреть страницы где упоминается термин Кинематическая ара поступательная : [c.447]    [c.8]    [c.24]    [c.55]    [c.29]    [c.30]    [c.263]    [c.267]    [c.447]    [c.551]    [c.611]    [c.156]   
Словарь-справочник по механизмам (1981) -- [ c.260 ]



ПОИСК



Алгоритмы кинематического расчета структурных групп с внутренней поступательной парой

Виды трения. Основные закономерности трения скольжения — Трение в поступательных кинематических парах

Движение вращательное Кинематические поступательное — Вид

Кинематика звеньев, образующих поступательную кинематическую пару

Контроль точносш кинематических цепей, связывающих вращающиеся и поступательно движущиеся звенья

Механизмы с двумя поступательными кинематическими парами

Начальное течение полосы при поступательном вдавливании прямолинейного штампа (кинематически определимый случай)

Определение реакций в кинематических парах структурных групп с внутренней поступательной парой

Определение реакций в поступательных и вращательных кинематических парах с учетом сил трения

Пара кинематическая одноподвижная поступательная

Пара кинематическая поступательная

Трение в кинематических парах Поступательная пара

Трение в поступательной кинематической паре

Уширение цапф. Замена шарниров поступательными парами Постановка кинематической цепи на различные звенья

Цепь кинематическая с одними поступательными парами



© 2025 Mash-xxl.info Реклама на сайте