Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материал термоэлектрический

Помимо указанных физических характеристик практическое использование термоэлектрического материала суш,ественно зависит от ряда технологических критериев. Сюда относятся механические свойства материала и его способность выдерживать многократные нагревы и охлаждения. Важным условием является отсутствие в материале необратимых физико-химических реакций и пре-враш,ений, которые чаш,е всего имеют место в области температур, близких к температуре плавления. Поэтому температура горячего спая термоэлемента выбирается суш ественно ниже температуры плавления материала. Термоэлектрические материалы, работаюш,ие в  [c.55]


Рис. 18. Контроль материала термоэлектрическим методом Рис. 18. <a href="/info/54621">Контроль материала</a> термоэлектрическим методом
С целью стандартизации термоэлектрических измерений и получения материала, относительно которого было бы удобно отсчитывать величины термо-э.д.с. различных чистых металлов и сплавов, было решено изготовить опорный электрод из слитка очень чистой платины. Такая практика возникает в 1922 г., когда в НБЭ проводилось сравнение термопар из различных стран. Эта работа будет вновь упомянута при обсуждении свойств термопары Р1—13 % КЬ/Р1. Было обнаружено, что платиновая проволока из плавки № 27 имеет наиболее отрицательную термо-э.д.с. по сравнению со всеми полученными ранее. Поскольку присутствие примесей в платине всегда ведет к росту термо-э.д.с., было решено, что получен образец очень чистой платины. Образцы проволоки из этой плавки получили название  [c.275]

Для изготовления термопар применяют материалы, термоэлектрические характеристики которых (термоэлектродвижущая сила - т.э.д.с) незначительно изменяются при градуировке и работе. Необходимо, чтобы материал термопары не корродировал, не окислялся и был достаточно однородным. Этим требованиям в большой степени удовлетворяют комбинации материалов, приведенные в табл. 7.2 [107],  [c.213]

Источником информации о физическом состоянии материала при термоэлектрическом методе неразрушающего контроля является термо-ЭДС, возникающая в цепи, состоящей из пары электродов (горячего и холодного) и контролируемого металла.  [c.184]

Рис. 4.14. Зависимость КПД термоэлектрического генератора т] ддр от добротности материала 7, и максимальной температуры при = 300 К Рис. 4.14. Зависимость КПД <a href="/info/35646">термоэлектрического генератора</a> т] ддр от добротности материала 7, и максимальной температуры при = 300 К
Развитием этого метода является метод измерения температуры в тонких поверхностных слоях трущихся тел. Сущность его состоит в том, что поверхность трения одного трущегося тела покрывают гальваническим или химическим способом тонким слоем другого материала, который должен прочно сцепляться с основным материалом, быть износостойким, обладать хорошими термоэлектрическими свойствами. Поверхность сцепления трущегося тела и тонкого слоя является одним слоем, а поверхность тела — другим. Возникающая в цепи ЭДС регистрируется измерительным прибором.  [c.111]


Измерения термоэдс были осуществлены по схеме, приведенной на рис. 1. Это термоэлектрическая пара, составленная контактными стержнями У и 2 и образцом 4. Для повышения чувствительности термоэдс к структурным изменениям образца контактные стержни были изготовлены из материала, из которого изготавливались образцы. Температура горячего стержня Т составляла 58 °С, температура комнаты Тк — 20 °С.  [c.195]

Проверка материала термопар на однородность термоэлектрических свойств. Отрезок проволоки отожжённого материала длиной 2000 мм скручивают в одном месте узлом.Место скручивания нагревают и определяют термоэлектродвижущую силу. При более детальной проверке скручивание повторяют через каждые 300 —400 мм. Однородный материал при таких испытаниях даёт ничтожно малые отклонения стрелки гальванометра.  [c.186]

Сущность его заключается в том, что двумя изолированными друг от друга резцами одинаковой формы и геометрии режущих частей, но изготовленными из разных материалов (например быстрорежущая сталь и твёрдый сплав) и поэтому обладающими неодинаковыми термоэлектрическими свойствами, одновременно снимаются стружки одинакового сечения. Если считать, что температура резания на обоих резцах одинакова в силу одинаковых условий работы, то получится как бы один термоэлемент, составленный из двух различных материалов резцов обрабатываемый материал в данном случае играет роль спайки и на показания милливольтметра влияния не оказывает. Показание милливольтметра обусловливается термоэлектрическими свойствами материалов резцов и температурой резания. Метод двух резцов позволяет сравнивать обрабатываемость различных материалов путём экспериментального установления скоростей резания, вызывающих одинаковую температуру на режущей кромке.  [c.284]

Используем вариационную формулировку задачи теплопроводности в неоднородном теле (см. 2.4) для анализа характеристик термоэлектрической теплоизоляции [12]. Рассмотрим плоский слой термоизоляции площадью Fq и толщиной h (рис. 3.7,а) с теплопроводностью теплоизолятора К, заключенный между двумя тонкими металлическими пластинами 1 и 2. Между пластинами расположен также полупроводниковый элемент 3 с площадью поперечного сечения /3, теплопроводностью А. 3 и электропроводностью Р3. Высота элемента может быть меньше h. В этом случае его коммутация с пластинами осуществляется проводниками из одинакового с пластинами материала. В первом приближении температуры и Т2 каждой пластины можно считать постоянными по их поверхности и равными температурам соответствующих контактов с полупроводниковым элементом. Выделение (или поглощение) тепло-  [c.79]

Термопары соединяют с электроизмерительным прибором соединительными и компенсационными проводами (рис. 14-2). Материал компенсационных проводов обычно тот же или близкий по термоэлектрическим свойствам к материалу термопар.  [c.280]

Широкое внедрение термоэлектрического охлаждения будет зависеть от дальнейшего прогресса в создании совершенных полупроводниковых материалов, а также от серийного производства эффективных в экономическом отношении термобатарей. Не останавливаясь подробно на последнем обстоятельстве, укажем только, что рационализация конструкции термобатарей и, в частности, применение рассредоточенных полупроводниковых элементов в них, как показали опытные исследования В. А. Семенюка и М. Н. Томашевич, делает возможным сократить в несколько раз расход полупроводникового материала и, следовательно, существенно удешевить их производство [Л. 59].  [c.174]

В настоящее время уменьшение нестабильности свойств материала термопар (термоэлектрических преобразователей) во времени осуществляют путем искусственного старения термопар [38, 39, 40,41] или предварительной термообработкой (отжиг) термоэлектродных проволок. Последний метод широко используют ВТИ, ОРГРЭС.  [c.53]

А. Ф. Иоффе нашел еще одно применение термоэлектрического эффекта, высказав интересную мысль о возможности его использования для определения коэффициента температуропроводности полупроводникового образца. Нахождение указанной характеристики полупроводника мыслилось осуществить путем пропускания через цепь, содержащую контактирующиеся полупроводниковые образцы п и р-типа, переменного электрического тока и создания таким образом на их границах системы тепловых волн, анализ проникновения которых в глубь материала позволит найти искомое значение его коэффициента температуропроводности а.  [c.11]


Действие термоэлектрических преобразователей основано на термоэлектрическом эффекте, в соответствии с которым в цепи, состоящей из двух соединенных концами разнородных проводников (электродов) возникает термоЭДС, зависящая от температур мест соединения. Такое соединение проводников называется термопарой. Если стабилизировать температуру Iq одного из мест соединения, то развиваемая термопарой термоЭДС (/, /q) будет определяться только температурой t второго места соединения (оно называется рабочим спаем или рабочим концом). Значение развиваемой термоЭДС не изменяется при включении в разрыв любого электрода или места их соединения третьего проводника из другого материала, если температура мест его подсоединения будет одинаковой. Посредством третьего проводника может быть подключен прибор для измерения термоЭДС, который, следовательно, может включаться как в разрыв электрода, так и в разрыв места соединения электродов. В типовых измерительных схемах термопара представляет собой два электрода, соединенных у одного конца (рабочий спай) с несоединенными другими концами (свободные концы), к которым подключается измерительное устройство. Электроды термопары изолируют и помещают в защитную арматуру, на внешней поверхности которой имеются монтажные элементы для закрепления на объекте. Такая конструкция называется термоэлектрическим преобразователем (ТЭП). Конструкция ТЭП, и его защитной арматуры, а также материал арматуры зависят от условий применения и весьма разнообразны. На рис. 5.2 приведены наиболее распространенные ТЭП. Основные конструктивные особенности ТЭП его монтажная длина (глубина погружения) L, конструкция крепежного штуцера (он может быть подвижным при невысоких давлениях контролируемой среды и неподвижными при высоких), количество термопар (одна или две), конструкция рабочего спая (изолирован от защитной арматуры или нет).  [c.332]

Основными источниками погрешностей при измерении температуры являются нарушения однородности материала тела вследствие введения в него термоэлектрического преобразователя, а также отвод (или подвод) теплоты по его проводам. Характер искажения температурного поля при выполнении паза для размещения датчика температуры показан на рис. 6.5. Определить точно место касания спая термоэлектрического преобразователя по-  [c.380]

С помощью измерения термоэлектрических характеристик можно производить оценку следующих характеристик материала анизотропию термоэлектрических свойств фазовые превращения содержание легирующего элемента деформацию образца.  [c.142]

Определить коэффициент добротности термоэлектрического генератора из теллурнда свинца РвТе, если материал термоэлектрического преобразователя имеет удельное электрическое сопротивление р = 5 10 Ом м, коэффициент термоэлектродвижущей силы (т. э. д. с.) а = = 6 10 В/К и теплопроводность X 2 Вт/(м К).  [c.170]

Третье слагаемое в выражении (8.24) - это добавочная теплопроводность за счет циркуляционных токов. Если материал термоэлектрически однороден, т. е. Oil = 2, то дЬбавочная теплопроводность равна нулю. Заметим, что третье слагаемое в уравнении (8.24) всеща положительное, так как (a2-Q i) >0.  [c.158]

Колебания температуры свободных концов понижаются путем отвода их в зону постоянной температуры при включении в цепь термопары- компенсационных проводов из материала, термоэлектрически аналогичного материалу термоэлектродов (хромель, алюмель и др.). Постоянство сопротивления внешней цепи обеспечивается надежностью контактов соединений в приборе и зависит от содержания их в чистоте.  [c.117]

На базе радиоактивного изотопа трудно построить прямой преобразователь большой мощности. Существенно большие возможности в этом отношении дает цепная ядерная реакция, позволяющая в принципе получать сколь угодно большое количество тепловой энергии. В августе 1964 г. в Институте атомной энергии им. И. В. Курчатова запущен первый реактор прямого преобразования тепла в электричество. Этот реактор-термопре- образователь получил название Ромашка . Основой Ромашки является высокотемпературный ( макс = 1800° С) реактор, активная зона которого состоит из не боящихся высокой температуры дикарбида урана и графита (используется как конструкционный материал). Активная зона реактора, имеющая форму цилиндра, со всех сторон окружена бериллиевым отражателем. На наружной поверхности отражателя находится термоэлектрический преобразователь, состоящий из большого числа кремний-германиевых пластин, внутренние стороны которых нагреваются теплом, выделяемым реактором, а наружные охлаждаются. Электрическая мощность Ромашки — 500 вт. Реактор-термопрео бразователь примерно такой же мощности построен также в США.  [c.408]

Теплопроводность батарейных датчиков определяется теплопроводностью обоих термоэлектродов >1,1 и и заполнителя Ха, а также соотношением сечений этих электродов. Рассмотрим возможность изменения Хд при изготовлении и эксплуатации наиболее применимых батарейных датчиков, коммутация которых осуществляется гальваническим покрытием отдельных отрезков термоэлектродной проволоки материалом с контрастными потермо-э. д. с. свойствам (спиральные, слоистые, решетчатые датчики) [8, 44]. На рис. 3,8,6 приведена схема такого датчика. Тепловой поток с плотностью д последовательно проходит три слоя. В первом слое толщиной х не вырабатывается сигнал — он служит для механической и электрической защиты термоэлектродов и выполняется из материала, заполняющего пространство между термоэлектродами во втором слое толщиной к — 2х. Основным элементом второго слоя является термоэлектрод 1 сечением f . Каждая вторая ветвь термоэлектрода покрыта слоем другого термоэлектродного материала 2 сечением имеет термоэлектрические свойства, близкие к материалу покрытия [7]. Места переходов от одиночного к биметаллическому электроду находятся на гранях среднего слоя и играют роль горячих либо холодных спаев дифференциальной термобатареи, сигнал которой и определяет плотность теплового потока д. Пространство между электродами занимает заполнитель 3 сечением /з. Если датчик диффузионно проницаем, то в /з входит и сечение капилляров. Наконец, теплота проходит снова через слой заполнителя толщиной х.  [c.71]


Полупроводниковые материалы сложного состава находят техническое применение при изготовлении термоэлементов, термогенераторов и холодильных устройств. К таким материалам относятся, например, тройной сплав Bi—Sb—Zn, употребляющийся для положительных ветвей термоэлементов, твердые растворы 0,25 PbS-0,5 PbSe-0,25 РЬТе и 0,3 PbS-0,7 PbSe и другие материалы, из которых изготовляют отрицательный электрод термоэлементов. Э( х )ективность использования материала в термоэлектрических устро йствах в простейшем случае оценивается критерием А. Ф. Иос е  [c.266]

Наиболее эффективными материалами для создания как термоэлектрических холодильников, так и термогенераторов являются материалы с максимальной величиной а о/%. Для термоэлектрического охлаждения необходим материал с высокими значениями коэффициента Пельтье и удельной электропроводности. Последнее требование обусловлено тем, что в добавление к теплу Пельтье всегда выделяется и джоулево тепло и, чтобы эффект джоулева нагрева не перекрыл эффект охлаждения, необходимы материалы с хорошей электропроюдностью. С другой стороны, при одном- и том же количестве тепла, выделяющемся вследствие эффекта Пельтье на одном контакте и поглощающемся на другом, разность температур между контактами будет тем больше, чем меньше теплопередача от горячего конца проводника к холодному, т. е. чем меньше коэффициент теплопроводности.  [c.265]

Для ряда изделий характерно образование термотоков. Так например, при обработке металлов резанием, а также при штамповочных операциях в зонах контакта инструмента и обрабатываемого материала возникают температуры в несколько сот градусов. Вследствие этого в случае разнородных инструментального и обрабатываемого материалов в термопаре инструмент — материал возникают термоэлектродвижущие силы (т. э. д. с.), а в замкнутых контурах станок — инструмент — изделие — станок или пресс — инструмент — изделие — пресс протекает результирующий термоэлектрический ток (термоток). Такие термотоки приводят к ускорению износа режущего инструмента, кромок пуансона и матрицы.  [c.36]

Определение марки стали термоэлектрическим методом Термоэлектрический прибор (фиг. 170) состоит из медного отупа / с приваренным серебряным наконечником 2, который нагревается до -)-150° нагревательной обмоткой 3, питаемой от сети переменного тока, через понижающий трансформатор 4. Щуп / соединен медным проводником 5 с нуль-гальванометром 6. Второй контакт гальванометра соединен Фиг. 170. Схема тер- с заостренным холодным стер-моэлекритического жнем 7, которым можно при-нрибора для опре- касаться к любому зачищен-I деления марок стали, ному месту испытуемого материала 8  [c.394]

Элементарный теллур и теллуриды некоторых металлов (А1яТеа, ВзгТеэ, СнгТе, РЬТе, ЗЬоТе.,, ЗеТе) применяются для изготовления элементов полупроводниковой техники (благодаря хорошим полупроводниковым свойствам). В комбинации с цинком применяется как детекторный материал. Изготовление сплавов с высокими термоэлектрическими характеристиками. Изготовление термопар для измерения низких температур от —75 до +90 °С (в паре с медью и платиной).  [c.347]

Лешателье предложил следующий метод термоэлектрического исследования. К концам проволоки, изготовленной из исследуемого материала, привариваются электроды из платиновой проволоки. Нагревая каждый спай до разной температуры, измеряют э. д. с. цепи гальванометром. В момент превращения разность потенциалов скачкообразно изменяет своё значение [2, 5]. По показаниям термометра и гальванометра строят искомую кривую / ( , е).  [c.196]

Определение марки стали термоэлектрическим методом Термоэлектрический прибор (фиг. 458) состоит из медного щупа С с приваренным серебряным наконечником Я который нагревается до температуры -)-150° С нагревательной обмоткой А, питаемой от сети переменного тока через понижающий трансформатор Г . Стержень С соединён медным проводником П с нульгаль-ванометром Г . Второй контакт гальванометра соединён с заострённым холодным стержнем которым можно прикасаться к любому зачищенному месту испытуемого материала М  [c.454]

Термореактивные материалы В 29 (способы и устройства для экструдирования С 47/(00-96) термореактивные смолы как формовочный материал К 101 10> Термостаты, использование для регулирования охлаждения двигателей F 01 Р 7/12 7/16 Термоформование изделий из пластических материалов В 29 С 51/(00-46) Термочувствительные [краски или лаки С 09 D 5/26 элементы (биметаллические G 12 В 1/02 тепловых реле Н 01 Н 61/(02-04))] Термоэлектрические [пирометры G 01 J 5/12 приборы (использование в термометрах G 01 К 7/00 работающие на основе эффекта Пельтье или Зеебека Н 01 L 35/(28-32))] Тигельные печи тепловой обработки 21/04 печей 14/(10-12)) лабораторные В 01 L 3/04 плавильные для литейного производства В 22 D 17/28] Тиски В 25 В (1/00-1/24 ручные 3/00) Тиснение бумаги В 31 F 1/07 картонажных изделий В 31 В 1/88 металлическое В 41 М 1/22 поверхности пластических материалов В 29 С 59/00 способы В 44 С 1/24) Титан [С 22 С (сплавы на его основе 14/00 стали, легированные титаном 38/(14-60)) С 25 (травление или полирование электролитическими способами F 3/08, 3/26 электроды на основе титана для электрофореза В 11/10)] Токарная обработка [древесины В 27 О <15/(00-02) инст рументы 15/(00-02)) камня В 28 D 1/16 пластмасс и подоб ных материалов В 29 С 37/00] Токарные станки [В 23 <В (3 25)/00 затыловочные В 5/42 конструктивные элементы и вспО могательные устройства В 17/00-33/60 линии токарных станков В 3/36 для нарезания резьбы G 1/00 общего назначения В 3/00-3/34 отрезные В 5/14 резцы для них (В 27/(00-24) изготовление Р 15/30) для скашивания кромок, снятие фаски или грата с концов прутков и труб В 5/16 фрезерные съемные устройства к ним С 7/02)]  [c.189]

Если изоляция термоэлектродов пепадежиа и быстро разрушается в процессе эксплуатации, то в результате воздействия высокой температуры термопара может выйтп пз строя в результате механических повреждений и коррозии. Кроме того, в такой термопаре могут иметь место дополнительные погрешности, связанные с изменением термоэлектрических свойств электродного. материала.  [c.110]

Тепломеры, датчики теплового потока, вставки — специальные устройства для измерения тепловых потоков, размещаемые на поверхности тела или внутри него. Выполняются они либо из теп-лоизолятора, либо из материала теплопередающей поверхности и содержат термоэлектрические преобразователи (часто многоспайные), измеряющие разность температур в слое тепломера, пропорциональную проходящему через тепломер (датчик) теп-  [c.392]

ТЭГ включает в себя систему подвода теплоты, термоэлектрическую батарею (ТЭБ) с теплоконтактной электроизоляцией и систему отвода теплоты. Теплота внешнего источника (пламя горелки, радионуклид, твэл, водяной пар и др.) подводится к горячему теплоприемнику или теплопроводу, на наружной поверхности которого установлена полупроводниковая термобатарея (низко-, средне-, высокотемпературная, каскадная), состоящая из множества ветвей р- и и-типа проводимости. Последо-вательно-параллельное соединение ветвей (прямоугольных, цилиндрических, радиально-кольцевых) осуществляется коммутационными шинами (алюминий, медь) методом пайки, прессования, диффузионной сварки, плазменного напыления или механическим прижимом. Спаи ТЭБ изолированы от горячего теплопровода и холодного корпуса электроизоляционными пластинами (оксидная керамика, слюда и др.). В некоторых генераторах для повышения надежности дополнительно устанавливается горячая охранная изоляция (плазменное напыление). Для защиты от окисления ТЭБ либо размещается в герметичном чехле, заполненном аргоном или азотом, либо покрывается антисублимационной эмалью, либо запрессовывается в матрицу из диэлектрического материала (слюда, полиамид и др.). Отвод теплоты от холодных спаев ТЭБ осуществляется оребренным холодным радиатором или хладоагентом (вода, антифриз и др.). Конструкция генератора стягивается в пакет при помощи плоских или тарельчатых пружин (р д = 50—300 Па), что позволяет обеспечить качественный тепловой контакт и высокую стойкость к термоциклирова-нию (нагрев — охлаждение).  [c.516]


Метод захвата используют в заводской практике для контроля неоднородности платиновых и платинородиевых проволок. На участки испытуемой проволоки накладывают через каждые 2—б м температурное поле специальной трубчатой печи, имеющей отверстие в кожухе, которое позволяет опускать на испытуемую проволоку перпендикулярно ее поверхности образец сравнения, представляющий собой отрезок проволоки из того же материала, что и испытуемая, с концом, загнутым в виде крючка. Этим крючком захватывают испытуемую проволоку и подтягивают ее вверх, создавая тем самым хороший тепловой и электрический контакт между участком проволоки, находящимся в печи, и образцом сравнения. Этот метод применим лишь для проволок с неокисленной поверхностью. При подтягивании проволоки на ее сгибаемом участке создается дополнительная неоднородность, что искажает результаты измерений. Кроме того, изменяется термоэлектрическая характеристика образца сравнения, находящегося в печи при температуре испытаний свыше 800 °С.  [c.212]

ТЕРМОЭЛЕКТРИЧЕСКИМ МЕТОД ДЕФЕКТОСКОПИИ — метод, основанный на измерении термоэлектродвижущей силы (тэдс), возникающей в месте контакта испытываемого изделия с нагретым электродом пз заранее выбранного материала. Т. м. д. применяется для сортировки металлов по маркам, для определения толщины гальванических покрытий, цемеп-тироваиного слоя, глубины обезуглероживания, а также для определения содержания некоторых элементов в сплавах.  [c.319]


Смотреть страницы где упоминается термин Материал термоэлектрический : [c.421]    [c.56]    [c.549]    [c.463]    [c.267]    [c.193]    [c.191]    [c.220]    [c.145]    [c.406]    [c.163]    [c.59]    [c.142]    [c.142]   
Теоретические основы теплотехники Теплотехнический эксперимент Книга2 (2001) -- [ c.517 ]



ПОИСК



9 термоэлектрическая



© 2025 Mash-xxl.info Реклама на сайте