Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Надежность в процессе эксплуатации

Многие параметры теплоэнергетической установки имеют заданный диапазон возможного их изменения. Ограничения бывают также заданы на характеристики отдельных узлов и элементов установки в соответствии с требованием возможности их изготовления и длительной надежности в процессе эксплуатации. Наконец, имеется система балансовых уравнений для всех узлов установки, которая связывает между собой все термодинамические и расходные параметры, а также технологические характеристики процессов.  [c.7]


Требования к фильтрации возрастают для систем с высоким рабочим давлением, агрегаты которых имеют малые зазоры в подвижных соединениях. Так, для систем высокого давления, к которым предъявляются повышенные требования по надежности, в процессе эксплуатации должна быть обеспечена очистка масла от абразивных включений, соизмеримых с толщиной граничного масляного слоя, т. е. толщиной более 1 мкм [5].  [c.22]

Главной задачей при конструировании этого узла является обеспечение его надежности в процессе эксплуатации вертолета. Основное в решении этой проблемы — конструктивно-технологические мероприятия, направленные на смягчение концентраторов сил и напряжений в зонах болтовых соединений и применение запасов прочности, обеспечивающих максимальную надежность всех элементов стыка.  [c.59]

Насос должен иметь высокий к.п.д., обладать достаточной долговечностью и надежностью в процессе эксплуатации. Регулирование производительности насоса должно осуществляться простыми средствами, непрерывно в процессе работы и с минимальны-  [c.116]

Эффективность использования автомобилей определяется их надежностью в процессе эксплуатации. В связи с этим в  [c.27]

Таким образом, числовые значения показателей надежности в процессе эксплуатации являются переменными. Так как исследования работоспособности автоматов и автоматических линий проводятся в период их стабильной эксплуатации, то полученные результаты, использованные в качестве исходных данных для прогнозирования надежности проектируемых машин, позволяют решить эту задачу именно для этого периода.  [c.142]

Механические свойства сварных соединений. Исходя из условий работоспособности и надежности в процессе эксплуатации сварных конструкций разработчик изделия определяет категорию ответственности сварного соединения I - особо ответственное, II - ответственное и III - неответственное (табл. 11.5).  [c.107]

ТЕНДЕНЦИИ ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ  [c.68]

Стоимостная оценка результатов Р , полученных от повьпиения эксплуатационных свойств деталей, определяется либо вследствие изменения их цены и обьема вьшуска, либо уменьщения потребности в этих деталях за счет увеличения их срока службы или других показателей надежности в процессе эксплуатации.  [c.34]

Прогнозирование выходных характеристик станков и машин на стадии проектирования вызвано необходимостью обеспечения их качества и надежности в процессе эксплуатации. Прогнозирование дает возможность, во-первых, оценить сопротивляемость станка и мащины эксплуатационным нагрузкам, во-вторых, целенаправленно выбрать оптимальные параметры станков и ГПС и ограничить эксплуатационные нагрузки, что в целом обеспечивает регламентированные показатели качества и надежности.  [c.745]


Режимы резания. От уровня назначаемых при проектировании станка режимов резания во многом зависят затраты на опытные операции и их надежность. В процессе эксплуатации режимы резания назначаются после выбора остальных параметров операционной технологии и должны учитывать технологические решения, принятые на предшествующих этапах разработки техпроцесса, а также организационнотехнические условия выполнения операции. Критерием выбора режимов резания является переменная часть себестоимости операции, зависящая от режимов (v, S, f) с учетом надежности инструментальной наладки.  [c.25]

Исходя из условий работоспособности, надежности в процессе эксплуатации сварной конструкции разработчик изделия определяет категорию ответственности сварного соединения I — особо ответственная, II — ответственная и III — неответственная (табл. 24.5).  [c.345]

Современное электроэрозионное оборудование дает возможность изготовлять цельные твердосплавные матрицы с рабочими окнами сложной формы и высокой точности. Цельные матрицы по сравнению с секционными имеют значительные преимущества большую жесткость и надежность (в процессе эксплуатации не образуются зазоры в местах стыка секций) значительно проще в изготовлении  [c.352]

Задача сохранения требуемого уровня надежности в процессе эксплуатации энергомеханического оборудования КС является на сегодняшний день более актуальной для отрасли по сравнению с задачей повышения надежности, которая, как показал опыт обслуживания в эксплуатационных условиях, решена не была[1].  [c.221]

Стандартные проверки не выделяют основных факторов и не определяют запаса точности по контролируемому параметру, что не позволяет оценить точностную вероятную модель надежности в процессе эксплуатации станков. Ответить на вопрос, как будут с заданной вероятностью изменяться точностные параметры станка во  [c.269]

Упругопластическое деформирование металла приводит к возникновению в поверхностном слое заготовки остаточных напряжений, растяжения или сжатия. Напряжения растяжения снижают сопротивление усталости металла заготовки, так как приводят к по явлению микротрещин в поверхностном слое, развитие которых ускоряется действием корродирующей среды. Напряжения сжатия, напротив, повышают сопротивление усталости деталей. Неравномерная релаксация остаточных напряжений искажает геометрическую форму обработанных поверхностей, снижает точность их взаимного расположения и размеров. Релаксация напряжений, продолжающаяся в процессе эксплуатации машин, снижает их качество и надежность.  [c.268]

Экономия в процессе эксплуатации обусловливается повышением надежности изделий, а также удешевлением ремонта.  [c.14]

Диагностика технического состояния и оценка ресурса аппаратов являются специальной дисциплиной, на базе которой формируются знания по обеспечению надежности и безопасности эксплуатации длительно проработавших сварных конструкций оболочкового типа. К числу отличительных черт нефтеперерабатывающих и нефтегазохимических производств следует отнести наличие значительной доли потенциально опасных объектов, выработавших проектный срок эксплуатации или не имеющих расчетного срока эксплуатации. Износ основного технологического нефтегазохимического оборудования достиг 80-90%, и оно естественно нуждается в замене. Поддерживать работоспособное состояние оборудования не представляется возможным без решения проблем диагностики современными достоверными методами и оценки остаточного ресурса. Параметры эксплуатации такого оборудования (рабочая температура и давление, рабочая среда и т.д.) охватывают очень широкие интервалы и весьма различны по воздействию на материал. Им присуще разнообразие по конструктивным оформлениям и по применяемым методам формоизменяющих операций при изготовлении. В процессе эксплуатации в металле конструктивных элементов оборудования происходит постепенное накопление необратимых повреждений и по истечении определенного времени возможны преждевременные их разрушения.  [c.3]

Работоспособность конструктивных элементов оборудования представляет собой очень широкое и комплексное понятие, охватывающее возможность выполнять свои рабочие функции без разрушений и аварий в течение длительного, но определенного и ограниченного времени. При этом должна быть обеспечена безопасность и надежность эксплуатации, соответствующая объектам такого ответственного назначения, как сосуды и аппараты, работающие под внутренним давлением. При оценке работоспособности конструктивных элементов аппаратов необходимо опираться на данные о реальной их дефектности и данные о реальных механических характеристиках металла с учетом эффектов старения. Диагностическое оборудование должно давать возможность производить измерения всех основных параметров повреждаемости, определяющих работоспособность элементов. Необходимо иметь методы, позволяющие оценивать работоспособность по данным о дефектах, свойствах металла в процессе эксплуатации, параметрах нагруженности с учетом перепадов давления, состояния коррозионной защиты и др.  [c.277]


Круг решаемых задач по оценке ресурса нефтехимического оборудования определяется принципиальной схемой физического старения конструктивных элементов (рис. 6.1). В процессе эксплуатации конструкции в результате постепенного накапливания повреждений в металле происходит снижение ресурса и показателей надежности (R - параметр предельной нагрузки, Q - параметр нагрузки). Процесс накопления повреждений в металле объединяется понятием старение . Интенсивность накопления поврежденности определяется свойствами металла М, напряженным состоянием Н и воздействием рабочей среды С. При этом движу-  [c.357]

Таким образом, методы прогнозирования ресурса должны базироваться на таких критериях, которые бы учитывали временные процессы накопления повреждений в металле. В качестве параметров надежности должны быть показатели долговечности, например, время до разрушения или число циклов нагружения до разрушения. Существующие нормативные материалы по расчету прочности не позволяют получать такие важные характеристики прочностной надежности. Например, в процессе эксплуатации аппаратов вследствие деформационного старения происходит некоторое повышение прочностных свойств, т.е. временного сопротивления и предела текучести металла. Для конструктивных элементов оборудования из низкоуглеродистых и низколегированных сталей, работающих при нормальных условиях эксплуатации, значение предела текучести может возрастать до 20%. Заметим, что временное сопротивление Gb является расчетной характеристикой при выполнении прочностных расчетов по действующим НТД. Из этого следует парадоксальный вывод о том, что с увеличением срока службы аппарата можно увеличивать рабочее давление, если производить оценку прочности по действующим отраслевым нормам и правилам. Другими словами, с увеличением срока службы аппарата его надежность должна увеличиваться. В действительности, наряду с увеличением прочностных свойств происходит повышение отношения предела текучести к пределу прочности К в, снижение пластичности и вязкости, которые определяют ресурс длительной прочно-  [c.366]

При написании книги введен ряд новых понятий и показателей. Так автор считает, что во всех расчетах, в числе основных показателей надо определять запас надежности по данному выходному параметру в вероятностной трактовке и при регламентированных условиях работы машины. Введено также понятие степень повреждения как численная характеристика изменения начальных свойств изделия в процессе эксплуатации и такие новые понятия, как потенциальные отказы, надежность технологического процесса, устойчивость изделия к отказам и др.  [c.4]

Наконец, теория надежности использует все lo. достижения в области расчета и проектирования машин данного типа, а также технологии их изготовления, которые. включают зависимости, характеризующие связь показателей качества с факторами, которые могут изменяться в процессе эксплуатации и производства машины. Например, уравнения и зависимости, описывающие рабочий процесс машины, возникающие динамические нагрузки, законы перемещения рабочих органов, характеристики мощности, КПД и др., необходимы для анализа и математического описания изменений начальных показателей машины, т, е, для решения коренной задачи надежности. Для науки о надежности машин характерно сочетание вероятностных методов оценки процессов изменения их параметров качества с выявлением детерминированных закономерностей процессов старения и разрушения, а также оценка условий производства машин и тех методов эксплуатации, которые определяют их работоспособность. Ее задачи— дать методы расчета машин и их элементов из условия обеспечения требуемых показателей надежности.  [c.12]

При работе изделия происходит изменение его работоспособности и поэтому запас надежности является функцией времени /Сн (t) и, как правило, уменьшается в процессе эксплуатации машины. Показателем надежности может служить также скорость изменения запаса надежности  [c.22]

Статические законы, описывающие изменения состояния изделия, хотя и не включают фактор времени, но могут быть использованы для расчетов надежности, если известны изменения характеристик изделия в процессе эксплуатации.  [c.62]

Их изменение в процессе эксплуатации при протекании разно-образных процессов старения во многом определяет надежность изделия.  [c.80]

При назначении технических условий на предельные состояния выходных параметров изделия выбираются лишь те, изменение которых возможно в процессе эксплуатации. Если опыт эксплуатации или расчет свидетельствуют, что данный выходной параметр не претерпевает изменений или эти изменения не регламентированы требованиями к работоспособности изделия, то ТУ не устанавливают и его предельных значений. Следует отметить, что сложность процессов функционирования и потери изделием работоспособности часто приводят к необоснованным назначениям ТУ на предельные состояния или к их отсутствию для ряда характеристик. Кроме того, численные значения допусков на выходные параметры часто устанавливаются для новых изделий и не оговариваются допустимые пределы их изменения. Поэтому весьма актуальной является задача по обоснованию и установлению запасов надежности по выходным параметрам изделия. При этом для современных машин часто целесообразно устанавливать нормативы не только на предельные состояния по выходным параметрам, но и по степени повреждения отдельных элементов машины, определяющих изменение ее характеристик. Так лимитируются предельные состояния по износу (гл. 7, п. 3), по степени деформации, по величине возникающих трещин и другим повреждениям. Например, существуют нормативы на предельные состояния агрегатов и узлов сельскохозяйственной техники, где указываются критерии и величины наибольших повреждений, при достижении которых узел и машина требуют капитального ремонта.  [c.173]


Выходные параметры каждого элемента при их изменении в процессе эксплуатации должны учитывать требования, предъявляемые к надежности всей системы.  [c.178]

Для высоконадежных систем основной характеристикой, как это было показано выше, является запас надежности по каждому из выходных параметров. При этом ресурс изделия будет определяться не только значением этого запаса но и, главное, скоростью изменения коэффициента надежности (О во времени. Поскольку для каждого из параметров эти закономерности могут иметь различный характер, запас надежности всей системы может лимитировать в процессе эксплуатации то один, то другой параметр (рис. 67). В этом случае ресурс системы Тр определяется временем достижения любым из параметров значения, при котором запас надежности становится равным единице или установленной допустимой величине Kj on > 1- Полученные данные корректируются с учетом системы ремонта (это в основном относится  [c.203]

Наконец, на правильность прогноза решаюш,ее влияние оказы вает достоверность информации о закономерностях изменения вы ходных параметров изделия в процессе эксплуатации, т. е. о слу чайных функциях (t) . .. (t). Информация о надежности изделия (понимая под этим оценку упомянутых функций (t) или данные по надежности элементов изделия) может быть получена из разных источников и этот вопрос рассмотрен в гл. 4, п. 5. Прогнозирование может вестись на стадии проектирования (имеются ТУ на изделие, конструктивные данные о машине и ее элементах, известны возможные условия эксплуатации), при наличии опытного образца изделия (можно получить начальные характеристики машины, оценить запас надежности) и при эксплуатации (имеется информация о потере работоспособности изделий при различных условиях эксплуатации). При прогнозировании надежности изделия на стадии проектирования имеется наибольшая неопределенность (энтропия) в оценке возможных состояний изделия. Однако методический подход к решению этой задачи остается общим.  [c.211]

Причины недостаточной надежности изделий возникают и в процессе проектирования, и в процессе производства, и в процессе эксплуатации. Поэтому работники служб надежности участвуют во всех мероприятиях, связанных с обеспечением требуемого уровня надежности изделий, начиная от разработки технического задания на проектирование нового образца и кончая составлением инструкции по эксплуатации серийно выпускаемых изделий.  [c.430]

Система мероприятий по повышению надежности. В системах управления качеством заложены также и основы для создания высоконадежных изделий, поскольку высокое начальное качество машины создает условие и для длительного его сохранения в процессе эксплуатации. Однако связь начального качества изделия с его надежностью, как это было видно из вышеизложенного (см. часть I), является достаточно сложной и зависит от многих факторов, которые не влияют на начальное качество изделия и не учитываются в процессе производства. Например, износостойкость применяемых материалов, ремонтопригодность конструкции, запас точности по основным сопряжениям, длительное сохранение стабильности формы и размеров изделия и другие показатели могут не контролироваться в процессе производства, однако они окажут решающее влияние на надежность изделия. Высокое начальное качество изделия — необходимое, но недостаточное условие для достижения высоких показателей надежности.  [c.431]

Контроль надежности изделий в процессе их изготовления. Этот контроль является весьма сложной задачей, поскольку, как правило, нельзя получить быструю информацию о показателях надежности выпускаемых изделий и их составных частей (узлов, элементов). Поэтому показатели начального качества изделия (а не их изменение в процессе эксплуатации) являются основным объектом контроля в процессе изготовления изделий. Однако управление технологическим процессом часто требует данных по надежности выпускаемых изделий не только из сферы эксплуатации, но непосредственно в ходе технологического процесса. Это достигается путем организации контрольных испытаний (см. выше и гл. И) непосредственно на предприятии-изготовителе При этом испытанию, как последней стадии технологического процесса, подвергаются не только изготовленная машина, но и ее наиболее ответственные узлы и механизмы.  [c.454]

Работы по повышению качества и надежности машины не заканчиваются с освоением ее в серийном производстве и продолжаются в течение всего периода производства и эксплуатации, когда более широко используется информация об отказах изделий, выявленных в процессе эксплуатации (см. гл. 12, п. 1).  [c.484]

Эффект разгрузки особенно важен для высоконагруженных скоростных подшипников тех роторов, у которых происходит рост дисбаланса во время эксплуатации (по сравнению с допустимым монтажным дисбалансом). Это относится в первую очередь к ротору газовой турбины, диск которой работает в области пластической деформации и у которой может наблюдаться заметная вытяжка лопаток. Более того, у газовой турбины возможны и дефекты обгар лопатки, обрыв частей лопатки и даже обрыв полной лопатки. Эти дефекты могут привести к возникновению неуравновешенных сил, измеряющихся сотнями килограммов и даже несколькими тоннами. Так, обрыв лопатки создает на современной газовой турбине неуравновешенную силу в 7—10 т, вектор которой вращается с огромной скоростью (более 10 ООО об/мин.). Очевидно, что такой дефект при обычной (жесткой) конструкции опор ротора должен привести к аварии и даже к катастрофе. Указанные дефекты могут возникать у газовой турбины как во время длительной эксплуатации, так и особенно в период форсировки и доводки конструкции двигателя на заводе. Таким образом, с помощью применения упругого подшипника, т. е. амортизации опоры, у газовой турбины можно существенно поднять ее надежность в процессе эксплуатации.  [c.55]

Свеча представляет собой устройство, позволяющее ввести искровой промежуток в камеру сгорагшя двигателя. К свече по проводу высокого )1апряжения подводятся импульсы тока высокого напряжения, создаваемые соответствующими аппаратами. Как только напряжение на электродах свечи достигает определенной величины, между электродами проскакивает искра, воспламеняющая в цилиндре рабочую смесь. Свеча является важным элементом системы зажигаш1я надежная работа всей системы зажигания в значительной мере зависит от совершенства конструкции свечи и ее надежности в процессе эксплуатации.  [c.251]

При синтезе механизма с оптимальной структурой учитывают, что стойка, которая обычно рассматривается как жесткое неподвижное звено, в реальных машинах под действием приложенных нагрузок испытывает деформации. Эти деформации могут оказывать влияние на относительное положение элементов кинематических пар не только в пределах одной кинематической пары, как это было рассмотрено в 2.6, но и в пределах замкнутых кинематических цепей механизма. При неправильном выборе структурной схемы (например, в предположении движения звеньев по схеме плоского механизма) в процессе эксплуатации возможны заклинивание ( заш,емление ) некоторых элементов кинематических пар, появление значительных дополнительных нагрузок из-за перекоса, изгиба, растяжения звеньев, чрезмерного изнашивания элементов кинематических пар, низкая надежность и частые отказы конструкции. Подобные явления могут иметь место, например, в тяжелонагруженных механизмах технологического оборудования (прессы, прокатные станы, литейные машины и т. п.), в сельскохозяйственных и транспортных машинах.  [c.50]


Варианты конструктивного оформления штуцеров с обо-j O iKaMH корпуса разнообразны. Наиболее целесообразны те, которые позволяют получить надежное проплавление всей с епки штуцера, исключая возможность образования и роста грещины от непровара. Примеры конструктивного оформления штуцеров в аппаратах нефтегазохимического производства показаны на рис. 1.8, а-г. Варианты с дополнительным укрепляющим кольцом 1 (рис. 1.8, а) и утолщенным патр>уб-UOM 2 (рис. 1.8, б) технологически просты, но при нагружении в зонах расположения угловых швов возникает значительная концентрация напряжений, что может служить причиной появления трещин в процессе эксплуатации. Варианты с вытяжкой горловины (рис. 1.8, в) и с вварньш торовым воротником 3 (рис. 1.8, г) более сложны в изготовлении, зато достигается  [c.23]

В процессе эксплуатации причиной многих отказов оболочковых конструкций является разрушение от трещиноподобных дефектов, которые возникают как в процессе сварки, монтажа и сооружения, так и в результате эксплуатационных повреждений. Обеспечение Tf)e6y Moro уровня надежности и работоспособности констр кций в процессе эксплуатации предполагает наличие информации о нагру женности стенки оболочки, которая является интегральной величиной действу ющих силовых воздействий на конструкцию (механических, температурных, монтажных и др.). Традиционно используемый для получения данных метод тензометрии позволяет получить информацию о напряженном состоянии конструкции при эксплу атационных нафузках. Начальное напряженном состояние конструкции при этом не измеряется. Однако известно, что начальные напряжения (монтажные, остаточные сварочные и др.) могут оказать значительное влияние на работоспособность и на-дежность при эксплуатации,В связи с этим на передний план выходят методы оценки реальной нафуженности конструкций, позволяющие  [c.63]

Торцевые уплотнения бывают одинарными и двойными. Устройство одинарного уплотнения показано на рис. 7.23,а. Вращающаяся втулка 4 устанавливается на валу и фиксируется от проворачивания штифтом 2. Усилием пружины 1 и уплотняемым давлением втулка 4 прижимается к неподвижной втулке 5, которая от проворачивания в корпусе фиксируется штифтом 7. На кольцевой плоской поверхности, ограниченной диаметрами нар и вн, о<бразуется плотный контакт, препятствующий проникновению жидкости из полости насоса. Уплотнение неподвижных стыков осуществляется резиновыми кольцами 3 и б. В процессе эксплуатации контактные поверхности втулок 4 и 5 изнашиваются. Для обеспечения постоянного надежного контакта вращающаяся или неподвижная втулки выполняются подвижными в осевом направлении. 180  [c.180]

Методы испытаний на надежность. При контроле надежности, как правило, используется контроль по количественным призиа-кам (по величине наработки на отказ). Обычно показатели надежности контролируются только у готовой продукции, т. е. после окончания процесса 1произ(водства. Контроль надежности может проводиться как на предприятии-изготовителе, так и в (процессе эксплуатации изделий (вне производства). На производстве применяются два вида контроля  [c.127]

Для повышения надежности СНК и быстрейшего устранения неполадок они обеспечиваются системой автоконтроля в процессе эксплуатации. В случае выхода из строя одного из элементов автоматизированные СНК останавливают операцию контроля и сигнализируют о возникшей неисправности. Наибольший экономический эффект достигается, когда СНК непосредственно управляют технологическим процессом. Например, работа системы автоматического регулирования толщины стальной полосы основана на непрерывном измерении рентгеновским толщиномером толщины прокатываемой между клетями стана полосы и обеспечении обратной регулируемой связи между показаниями толщиномера и усилием обжатия валков стана.  [c.28]


Смотреть страницы где упоминается термин Надежность в процессе эксплуатации : [c.180]    [c.71]    [c.232]    [c.180]    [c.282]    [c.44]    [c.170]    [c.43]    [c.396]   
Справочник авиационного инженера (1973) -- [ c.115 ]



ПОИСК



Сбор информации о надежности в процессе производства и эксплуатации машин

Тенденции изменения показателей надежности в процессе эксплуатации



© 2025 Mash-xxl.info Реклама на сайте