Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь аустенитного класса, аустенитно-мартенситная

Таким образом, косвенный метод определения предела выносливости позволяет быстро произвести ориентировочную оценку сопротивления металла разрушению от воздействия циклических нагружений. На основании исследований установлено, что микроструктура стали оказывает влияние на сопротивление малоцикловому разрушению. Наиболее высоким сопротивлением разрушению при циклическом разрушении обладает сталь с аустенитной структурой, менее высоким — сталь с феррито-перлитной структурой и наименьшим — сталь переходного класса (феррито-мартенситная), что объясняется особенностями их микроструктурных составляющих.  [c.187]


Стали перлитного класса характеризуются относительно малым содержанием легирующих элементов, мартенситного — более значительным и, наконец, аустенитного — высоким содержанием легирующих элементов.  [c.361]

Отмечаем, что рассмотренная классификация условна и относится к случаю охлаждения на воздухе образцов относительно небольших размеров. Меняя условия охлаждения, можно получать и разные структуры. Так, при закалке перлитной стали может быть получена мартенситная структура, а при медленном охлаждении сталь мартенситного класса испытывает превращение в перлитной области. Охлаждение аустенитной стали ниже нуля может вызвать в ней мартенситное превращение.  [c.362]

Многие сплавы подвергают испытаниям на межкристаллит-ную коррозию. Особенно часто определяют склонность к межкри-сталлитной коррозии коррозионностойких (нержавеющих) сталей аустенитного, аустенито-мартенситного и аустенито-ферритного классов. ГОСТ 6032—58 предусматривает методы таких испытаний проката, поковок, труб, проволоки, литья, сварных швов и сварных изделий, изготовленных из целого ряда сталей этих классов, а также двухслойных сталей и биметаллических труб с плакирующим или основным слоем из этих марок сталей.  [c.451]

По структуре после охлаждения на воздухе определяют структуру стали (образцы небольшого диаметра поперечного сечения) после нормализации. По этому признаку легированные стали делят на три основные класса перлитный, мартенситный и аустенитный. Эта классифи-  [c.173]

Стали аустенитного класса содержат до 20—30% легирующих элементов (в основном N1, Сг, Мп). Вследствие высокой устойчивости аустенита и понижении мартенситной точки до отрицательных темпе-  [c.174]

В зависимости от химического состава и структуры коррозионно-стойкие стали могут быть мартенситного, мартенситно-ферритНого, ферритного, аустенитно-ферритного, аустенитно-мартенситного и аустенитного классов (рис. 15.6).  [c.264]

Проще изготовление пустотелых клапанов путем приварки донышка (рис. 269, ж). После приварки сферическую поверхность головки клапана, фаски и торец штока наплавляют стеллитом. Затем поверхности клапана шлифуют и полируют. Однако сварке поддаются только некоторые клапанные стали. Наиболее жаропрочные стали мартенситно-аустенитного класса -не свариваются. К тому же сварные клапаны менее прочны, чем "клапаны, полученные редуцированием.  [c.394]

По содержанию углерода легированные стали, как и углеродистые, могут быть низко-, средне- и высокоуглеродистыми. В зависимости от структуры сталей после охлаждения на воздухе с высоких температур различают стали перлитного, ферритного, аустенитного, мартенситного, карбидного и промежуточных классов.  [c.122]


К межкристаллитной коррозии склонны высоколегированные стали всех классов, имеющие высокое содержание хрома, вследствие выпадения под действием нагрева карбидов хрома по границам зерен, обеднения границ зерен хромом и из-за этого пониженной стойкости границ против коррозии. Опасность межкристаллитной коррозии возникает при нагреве хромоникелевых сталей аустенитного и аустенитно-ферритного классов до температур 500—850°С, при нагреве высокохромистых сталей мартенситного, мартенситно-ферритного и ферритного классов до температур свыше 950°С.  [c.126]

Хром как тугоплавкий металл входит в качестве легирующего элемента в состав низко- высоколегированных сталей мартенситно-го, ферритного и аустенитного классов.  [c.85]

Для сталей перлитного класса, содержащих небольшое количество легирующих элементов, кривая скорости охлаждения на воздухе пересекает обе ветви С-кривых в области перлитного превращения (рис. 87, а). У сталей мартенситного класса, содержащих большее количество легирующих элементов, вследствие чего С-кривые сдвинуты вправо, а мартенситная точка — ближе к 0° С, кривая скорости охлаждения на воздухе не пересекает С-кривых (рис. 87, б) при температуре 20" С структура стали будет состоять из мартенсита. При значительном содержании легирующих элементов и углерода в стали С-кривые значительно сдвинуты вправо (рис. 87, в), а мартенситная точка находится ниже 0° С. Таким образом, при охлаждении на воздухе сталь сохраняет аустенитную структуру при температуре 20° С (рис. 87, в).  [c.120]

Свойства легированных сталей в рабочих условиях определяются содержащимися в них углеродом и другими элементами, специально введенными в состав. Различают три группы легированных сталей низколегированные с суммарным содержанием легирующих добавок менее 2,5 % среднелегированные с 2,5— 10 % легирующих элементов и высоколегированные с содержанием легирующих элементов более 10 %. В зависимости от микроструктуры различают стали перлитного, мартенситного, мар-тенситно-ферритного, ферритного, аустенитно-мартенситного, аустенитно-ферритного и аустенитного классов. В котлостроении применяют стали двух классов перлитного и аустенитного.  [c.220]

В обзоре по механизмам распространения усталостных трещин в малоуглеродистых сталях, в сталях аустенитного класса и в мартенситных сталях [121-127] показано, что имеет место несколько возможных ситуаций у кончика трещины  [c.388]

Мартенситный класс. Стали этого класса по своим свойствам являются средними между низколегированными сталями перлитного класса и высоколегированными аустенитно-го. После термической обработки они обладают высокими механическими свойствами. Основной вид термической обработки, придающий оптимальные свойства,— закалка или нормализация с последующим высоким отпуском. Иногда используется смягчающая обработка, заключающаяся в отжиге. Режимы термической обработки сталей этого класса по ГОСТ 10500—63 и ГОСТ 5949—61 приведены в табл. 2.  [c.94]

Изучение влияния температуры на растворимость водорода в стали проведено на сталях перлитного, мартенситно-ферритного и аустенитного классов, а также на никелевых сплавах (табл. 1 и рис З). Полученные изо—  [c.119]

Возможность упрочнения высоколегированных коррозионностойких сталей (переходного класса) за счет процессов, протекающих в твердых растворах в результате дополнительной термической обработки (высокий или низкий отпуск, обработка холодом) имеет важное значение для промышленного использования новых сталей высокой прочности. Степень неустойчивости у-твердого раствора зависит от химического состава хромоникелевых сталей, положения точки мартенситного превращения Мн), которая в системе хромоникелевых и никелевых сталей понижается с повышением содержания Ni, С, N, Мп и Сг. Химический состав стали этой группы подбирают таким образом, чтобы при высоких температурах она была практически полностью аустенитной и при быстром охлаждении сохраняла это состояние, но в виде неустойчивого аустенита. Этот аустенит под действием различных факторов в зависимости от точки Мн превращается в мартенсит, например, при холодной деформации или обработке холодом при —70° С, сообщая этим самым стали более высокие прочностные свойства.  [c.42]


При сравнительно невысоких рабочих температурах (100— 400° С) в качестве жаропрочных могут применяться конструкционные стали — углеродистые (до 350° С) и низколегированные, а также сплавы на основе меди, алюминия и титана. При температурах выше 400° С применяют низколегированные стали перлитного класса, жаропрочные до 550—580° С и коррозионностойкие стали мартенситного класса, жаропрочные до 600—620° С. Высоколегированные стали аустенитного класса находят применение в интервале температур 550—700° С, аустенитные сплавы  [c.152]

Мартенситные стали. Из сталей мартенситного класса в качестве жаропрочных нашли практическое применение стали с 11— 13% (в среднем 12%) хрома. Для повышения жаропрочных свойств стали дополнительно легируют молибденом, вольфрамом, ванадием и ниобием. Модифицированные хромистые стали в основном рассчитаны на применение в температурном интервале 560— 620° С, в котором жаропрочность и жаростойкость низколегированных сталей перлитного класса становится уже недостаточной, а использование аустенитных сталей экономически нецелесообразно.  [c.153]

Сталь мартенситного и аустенитного класса (прокат или поковка)  [c.351]

Увеличение содержания углерода и легирующего элемента характеризуется не только сдвигом вправо С-кривой, но и снижением мартенситной точки. У стали аустенитного класса мартенситная точка лежит ниже 0°. При охлаждении стали аустенитного класса до 0° превращение не происходит аустенитная структура сохраняется при комнатной температуре (фиг.  [c.361]

Стали переходного класса — аустенитно-мартенситные приобретают такое состояние после охлаждения из аустенитной области в связи с тем, что определяемая составом температура начала их мартенситного превращения находится вблизи нормальной (20—60 °С). Достаточно быстрое охлаждение может зафиксировать почти полностью аустенитное состояние стали, но аустенит должен быть нестабильным и распадаться при пластической деформации с образованием мартенсита. Такой же распад нестабильного аустенита достигается обработкой холодом при —50 -ь —70 °С. Отпуск стали, обработанной на мартенситно-аусте-нитную структуру, как и сталей рассмотренных типов, приводит к остариванию мартенсита и повышению прочности стали. Содержание углерода в этих сталях может быть более высоким, чем в мартенситно-стареющих, так как наличие значительного количества аустенита обеспечивает получение достаточной ударной вязкости.  [c.265]

Л 1еньшее применение по сравнению с только что рассмотренными двумя классами стали - аустенитным и аустенитно-мартенситным — имеют стали аустеннто-ферритного класса (их еще иногда называют двухфазными). Причина за слючается в том, что эти стали отличаются нестабильностью свойств — небольшие колебания и составе (внутри марочного содержания элементов) приводят к существенному изменению количественного соотношения у- и а-фаз и, следовательно, к различию в свойствах.  [c.495]

При выборе легированны. сталей следует иметь в виду, что наиболее склонными к растрескиванию являются стали мартенситной структуры. Стали аустенитного класса, как было указано ранее, не стабилизированные, а также етабилизи-рованные титаном и ниобием, склонны к растрескиванию в большом количестве, сред, в особенности в растворах, содержащих хлориды.  [c.116]

В зависимости от структуры различают три основных класса нержавеющих сталей. Каждый класс включает ряд сплавов, которые несколько различаются по составу, но обладают сходными физическими, магнитными и коррозионными свойствами. Здесь приводятся обозначения сталей в соответствии с классификацией Американского института железа и стали (AISI), которую часто используют на практике. Перечень основных марок нержавеющих сталей, выпускаемых промышленностью, представлен в табл. 18.2. Основными классами нержавеющих сталей являются мартенситный, ферритный и аустенитный.  [c.296]

Мартенситные стали получили название по аналогии с мар-тенситной фазой углеродистых сталей. Мартенсит образуется при фазовом превращении сдвигового типа, происходящем при быстром охлаждении стали (закалке) из аустенитной области фазовой диаграммы, для которой характерна гранецентрированная кубическая структура. Мартенсит определяет твердость закаленных углеродистых сталей и мартенситных нержавеющих сталей. Нержавеющие стали этого класса имеют объемно-центрированную кубическую структуру они магнитны. Типичное применение — инструменты (в том числе и рёжущие), лопатки паровых турбин.  [c.296]

Жаропрочные стали. В зависимости от предельных рабочих температур стали подразделяются на теплопрочные перлитного, мартенситного и мартенситно-ферритного классов, работающих при температурах 350...600 С, и жаропрочные аустенитного класса, работающие при 500...700 С. Эти стали применяются главным образом в котлостроении для изготовления паропроводов, пароперегревателей, подвергаемых длительным механическим воздействиям при высоких температутзах  [c.102]

Стали аустенитного класса для достижения высокой жаропрочности дополнительно легируют Мо, V, V, МЬ, В. Их применяют для деталей, работающих при 500 700 с. Жаропрочность аустенитных сталей выше, чем пер-лизных, мартенситных и мартенситно-ферритных. Аустенитные стали пластичны, хорошо свариваются, но несколько затруднена их обработка резанием.  [c.103]

С целью экономии дефицитного никеля часть его может быть заменена марганцем или азотом. При этом Структура стали может сохраниться аустенитной либо перейти в аустенитно-ферритный или аустенитно-мартенситный класс. Экономнолегированные хромоникелевые стали по коррозионной стойкости не уступают сталям типа 18—8 и могут полноценно их заменять.  [c.32]

Исследование межкристаллиткой коррозии. Существуют испытания, на основании которых можно определять склонность сплавов к межкристаллитной коррозии. Особенно часто определяют склонность к межкристаллитной коррозии нержавеющих сталей аустенитного, аустенитно-мартенситною и аустенит-но-ферритного классов. Методы испытаний проката, поковок, труб, проволоки, литья, сварных соединений, изготовленных из сталей этих классов, а также двухслойных сталей и биметаллических труб с плакирующим или основным слоем из этих сталей предусмотрены ГОСТ 6032—75.  [c.90]


По показателям степени окисления между сталями перлитного и аустенитного класса находится ферритно-мартенситная сталь 12Х11В2МФ (среднее значение и=0,55). Относительно высокое значение п для этой стали в сравнении со сталями перлитного класса также подтверждает большое влияние взаимодействия хрома и хлоридов на процесс коррозии.  [c.140]

Для выяснения возможности проникновения водорода в сталь при сравнительно невысоких температурах и повышенных давлениях были проведены исследования водородо-проницаемости технического железа, углеродистой стали марки 20, низколегированных сталей 12МХ и ЗОХМА, стали марки 2X13 мартенситного класса и стали марки Х18Н10Т аустенитного класса. Испытания для определения постоянных водородопроницаемости различных марок сталей проводились при температурах 100-900 и давлениях водорода 10-600 атм.  [c.123]

Коррозионностойкие стали подразделяются на хромистые, хромоникелевые, хромомарганцевые и хромомарганцевоникелевые стали. По структуре коррозионностойкие стали могут быть аустенитно-го, ферритного, аустенито-ферритного, мартенситного и мартенсито-ферритного классов. Наиболее опасными видами коррозии коррозионностойких сталей являются питтинговая, язвенная и щелевая коррозии в кислых и в нейтральных растворах хлоридов, межкрис-таллитная коррозия, коррозионное растрескивание в горячих растворах хлоридов.  [c.69]

Нержавеющие, жаростойкие и жаропрочные хромоникелевые стали с аустенитной или аустенитно-мартенситной структурами (Х18Н9Т, Х23Н18, Х15Н9Ю). Скорости резания, которые допускаются при обработке деталей из этих сталей, примерно в 2 раза ниже, чем при обработке деталей из стали 45. Стали этой группы характеризуются наилучшей обрабатываемостью среди других жаропрочных сталей аустенитного класса.  [c.34]

Высоколегированные стали по структурным признакам подразделяются на следующие шесть классов мартеиситный, мартепситно-ферритный (не менее 5— 10% феррита), ферритный, аустенитно-мартенситцый, аустенитно-ферритный (феррита более 10 %) и аустенитный. В арматуростроении применяются главным образом стали мартенситного, ферритного и аустенитного классов. Стали аустенитного класса обладают высокими пластическими свойствами, коррозионно-стойки, немагнитны.  [c.27]

Нержавеющие кислотоупорные и жаропрочные стали аустенитного класса и переходного аустенитно-мартенситного класса (Сг18 N1 > 9)  [c.567]

Электроды покрытые для сварки коррозионно-жаростойких и жаропрочных сталей — мартенситного, мартенситно-ферритного, ферритного, аустеиитно-ферритного и аустенитного классов. Электроды поставляются но ГОСТ 10052—75 31 тина по гарантированному химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла (табл. 42). Полный химический состав наплавленного металла приведен в ГОСТ 10052—75. Приближенные его значения можно определить расшифровкой названий типов электродов, пользуясь данными, нриведенньши на с. 10.  [c.66]

Г механические свойства и износостойкость сталей различных классов простых углеродистых, низколегированных конструк-i ционных, высоколегированных аустенитных, мартенситных, кар-бидных и друг . Образцьриспытывали при различных структур-I ных состояниях. Испытания на износ проводили на установках типа Шкода—Савина, Бринеля и на центробежной машине X ЧИМЭСХа,, в которой исследовалась абразивная износостойкость % образцой При изнашивании вращением по прослойке кварцевого песка.  [c.5]

Приведенная на рис. 53. схема иллюстрирует области существования сталей различных классов. Из схемы видно, что мартенситные стали приобретают свойственный мартенситной структуре высокий предел текучести непосредственно при охлаждении после закалки. Стали переходного класса после закалки имеют Ь основном аустенитную структуру, низкую прочность, так как их мартенситная точка лежит при температуре бколо или ниже комнатной.  [c.130]

Наименее изучен вопрос коррозионной стойкости сталей аусте-нитомартенситного класса и, особенно, применительно к использованию этих сталей в химическом машиностроении. Коррозионная стойкость сталей переходного класса не меняется при переходе от аустенитной (закаленное состояние) к мартенситной (об-ра< ка холодом) структуре. Низкотемпературный отпуск (до 350—400° С), не приводящий к образованию избыточных фаз, также не оказывает существенного влияния на коррозионную стойкость стали.  [c.134]


Смотреть страницы где упоминается термин Сталь аустенитного класса, аустенитно-мартенситная : [c.363]    [c.272]    [c.120]    [c.83]    [c.141]    [c.177]    [c.361]    [c.361]    [c.361]    [c.488]    [c.102]   
Теплоэнергетика и теплотехника Общие вопросы (1987) -- [ c.0 ]



ПОИСК



Особенности передела слитков хромоникелевых и других нержавеющих сталей аустенитного и аустенитоферритного (мартенситного) классов

Сталь аустенитная

Сталь аустенитно-мартенситного класса аустенитно-ферритного класса Механические свойства и химический состав

Сталь аустенитно-мартенситного класса аустенитного класса — Механические свойства и химический состав 1 — 16, 17 — Применение

Сталь аустенитно-мартенситного класса — Механические свойства и химический состав

Сталь мартенситная



© 2025 Mash-xxl.info Реклама на сайте