Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реакции идеальных связей динамические

В книге рассматриваются метод виртуального варьирования и метод переменного действия как дополняющие друг друга и составляющие общий аналитический подход, который является концептуальным для естествознания. На примере механических систем изучается изменение действия в результате применения виртуального варьирования, при котором из рассмотрения исключаются реакции идеальных связей. Таким образом, создаётся своего рода инструмент , освоение которого необходимо для учёта ограничений при исследовании несвободных динамических систем.  [c.1]


В теоретической механике содержание работы было бы отнесено к разделам Дифференциальные принципы механики и Интегральные принципы механики . Здесь мы рассматриваем метод виртуального варьирования и метод переменного действия как дополняющие друг друга и составляющие общий аналитический подход, который является концептуальным для естествознания. На примере механических систем изучается изменение действия в результате применения виртуального варьирования, при котором из рассмотрения исключаются реакции идеальных связей. Таким образом, создаётся своего рода инструмент , освоение которого необходимо для учёта ограничений при исследовании несвободных динамических систем.  [c.9]

Общее уравнение (26) рассматривается вместе с уравнениями связей вида (22) и уравнениями для виртуальных вариаций вида (25). Для динамических систем (23) общее уравнение (26) не содержит реакций идеальных связей, из него следует столько уравнений движения, сколько имеется независимых виртуальных вариаций. Таким путём из уравнений несвободной системы исключаются реакции идеальных связей.  [c.101]

Свойство идеальности. Общее уравнение несвободных динамических систем. Для задания реакций и принуждений реакций система (2), (3) должна быть доопределена. В этих целях используем аналог свойства идеальности связей. Свойство идеальности связей в аналитической механике вводится с помощью приёма сравнения мыслимых движений из одного и того же состояния и может быть записано в трёх эквивалентных формах  [c.95]

Общее уравнение (10) (и (11)) несвободных динамических систем (3) с идеальными связями (2) является необходимым и достаточным (при предположении реализуемости реакций и принуждений реакций) условием того, что действительное движение системы для заданных сил F и принуждений согласовано с уравнениями связей [131.  [c.96]

Для того чтобы пояснить смысл замены вариаций координат в выражении динамического принципа виртуальных перемещений вариациями ускорений, обратимся к уравнениям Лагранжа 1-го рода (см. гл. IV, 7). Реакции идеальных голономных связей в уравнениях Лагранжа 1-го рода выражены суммами вида  [c.268]

Для вывода динамических уравнений изучаемого движения применим теорему о кинетическом моменте в абсолютном движении тела, т. е. по отношению к системе отсчета 0х1,у ,г . Согласно этой теореме, производная по времени от кинетического момента Ко относительно неподвижной точки равна главному моменту относительно той же точки всех внешних сил, в данном случае только активных сил так как реакция Ко проходит через О и связь идеальна (без трения)  [c.452]


Как было показано, принцип Даламбера позволяет записывать динамические уравнения движения в виде уравнений равновесия, так как при добавлении сил инерции к активным силам и силам реакций связен, действующим на систему, получается уравновешенная система сил. Но если система сил уравновешена, то к ней применим принцип возможных перемещений. Последовательное применение этих принципов к движущейся механической системе, на которую наложены идеальные стационарные голономные удерживающие связи, позволяет сформулировать принцип Даламбера— Лагранжа если к движущейся механической системе, на которую наложены идеальные стационарные голономные удерживающие связи, условно приложить силы инерции всех ее точек, то в каждый момент времени сумма элементарных работ активных сил и сил инерции равна нулю на любом возможном перемещении системы, т. е.  [c.288]

Расчет рам на динамические воздействия производился главным образом в связи с проверкой их на сейсмические нагрузки. Эта весьма сложная и актуальная проблема находится сейчас в центре внимания ученых, причем учет пластических деформаций здесь совершенно необходим. Требование, чтобы в результате сейсмического воздействия деформации в каркасе сооружения оставались упругими, приводит к громадному перерасходу материалов. Преодоление математических трудностей, связанных с расчетом рам в упруго-пластической стадии работы, так же как и в случае пространственных конструкций, производится обычно за счет уменьшения числа степеней свободы системы и сосредоточения масс в одной или нескольких точках. При этом чаще всего рама приводится к системе с одной степенью свободы — консоли с сосредоточенной на конце массой. Систематическое изложение такого подхода и его обобщение на системы с двумя степенями свободы проведено в монографии И. И. Гольденблата и Н. И. Николаенко (1961). Авторы рассматривают движение системы с одной степенью свободы, когда материал несущего элемента определяется диаграммой Прандтля под действием мгновенного и прямоугольного импульса. Для работы рам при сейсмических нагрузках характерно полное разрушение элементов в местах действия наибольших изгибающих моментов, в связи с чем в этих местах образуются не пластические, а идеальные шарниры. С математической точки зрения решение таких задач не представляет дополнительных трудностей по сравнению с упругим расчетом, между тем результаты их существенно разнятся. Эта разница проистекает еще и из того, что сейсмические нагрузки, действующие на сооружение, зависят от величины реакции сооружения, а последняя намного уменьшается при учете пластических деформаций и тем более при выключении из работы отдельных связей.  [c.319]

В большинстве прикладных задач не удается описать течение газа, используя лишь модель идеального газа. Реальное течение сопровождается физико-химическими процессами, природа которых и методы их математического описания суш ественно различаются. Однако, несмотря на одновременное протекание различных ре таксационных процессов, их удается разделить и изучать независимо, поскольку взаимное влияние по суш еству невелико. В частности, неравновесное возбуждение или дезактивацию колебательных степеней свободы можно изучить, используя неравновесные значения концентраций различных компонент, полученные в предположении равновесия поступательных и колебательных степеней свободы. Характер неравновесного протекания химических реакций в двухфазной среде лишь в малой степени зависит от динамического и теплового состояния частиц. В связи с этим в настоящей и следующей главах будут раздельно рассмотрены неравновесные физико-химические процессы, которые могут иметь место в соплах, в том числе неравновесное возбуждение колебательных степеней свободы, химические реакции, неравновесные двухфазные течения.  [c.250]


Принцип освобождаемости от связей в механике (заключающийся во введении в уравнения дополнительных слагаемых, называемых реакциями связей) распространяется на динамические системы, описываемые обыкновенными дифференциальными уравнениями при наличии ограничений на фазовые координаты. Составлено общее уравнение движения динамических систем с идеальными связями, частными случаями которых являются системы Н.Г. Четаева (см. п. 12.1) и системы с производными высших порядков [88]. Теория применяется при построении уравнений для медленных переменных в системах с малым параметром (не равным нулю). В качестве примера рассматривается автоколебательная система с инерционным возбуждением, к которой приводится динамическая система Лоренца (Е. N. Lorenz) [73.  [c.99]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

В большинстве прикладных задач не удается описать течение газа, используя лишь модель идеального газа. Реальное течение сопровождается физико-химическими процессами, природа которых и методы математического описания существенно усложняются. Система уравнений и граничных условий, приведенная в 1 гл. для многоскоростной, многотемпературной и реагирующей сплошной среды, дает общее представление о сложности задачи описания движения такого континуума в наиболее общем случае. На практике приходится в основном иметь дело именно с такого рода течениями. Однако, несмотря на одновременное протекание различных релаксационных процессов, их удается разделить и изучать независимо, поскольку взаимное влияние по существу невелико. В частности, неравновесное возбуждение или дезактивацию колебательных степеней свободы можно изучить, используя неравновесные значения концентраций различных компонент, полученные в предположении равновесия поступательных и колебательных степеней свободы. Характер неравновесного протекания химических реакций в двухфазной среде лишь в слабой степени зависит от динамического и теплового состояния частиц. В связи с этим в настоящей главе будут раздельно рассмотрены неравновесные физико-химические процессы, которые могут иметь место в соплах, в том числе неравновесное возбуждение колебательных степеней свободы, химические реакции, неравновесные двухфазные течения.  [c.190]


Курс теоретической механики 1973 (1973) -- [ c.407 ]

Курс теоретической механики 1981 (1981) -- [ c.250 ]



ПОИСК



Идеальные связи и идеальные реакции

Идеальные связи. Реакции идеальных связей

Реакции идеальных связей

Реакции связей

Реакции связей динамические

Реакция динамическая

Связи идеальные

Связи реакции связей

Связь динамическая



© 2025 Mash-xxl.info Реклама на сайте