Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера интегралы постоянная

Этот интеграл уравнений Эйлера называется интегралом Бернулли для потенциального стационарного потока идеальной несжимаемости жидкости. Постоянная будет одной и той же для всей области потенциально го потока. Этот интеграл, часто  [c.90]

Этот частный случай интеграла Лагранжа называется интегралом Эйлера (1755 г.). Он выражает тот факт, чю при потенциальном, установившемся движении полная энергия единицы объема есть величина, постоянная для всех точек в потоке.  [c.286]


Интегрирование уравнений движения тяжелого твердого тела. Первые интегралы уравнений движения. Система уравнений (а) и (Ь), определяющих движение твердого тела с одной неподвижной точкой под действием силы тяжести, представляет собой систему шести нелинейных дифференциальных уравнений первого порядка с постоянными коэффициентами относительно шести неизвестных функций времени р, q, г, yi, у2, Уг- После того, как величины р, q, г, Уь Y2, Уз будут найдены в функции времени, для определения углов Эйлера ф, р, останется подставить найденные величины в кинематические уравнения Эйлера. Поэтому задача определения движения твердого тела сводится к нахождению шести независимых первых интегралов системы.  [c.402]

Равенство (4.4.7) называется интегралом Бернулли—Эйлера. Постоянная С в этом интеграле сохраняет одно и то же значение для всех частиц движущейся жидкости.  [c.52]

Обозначим через E Ii, I2) совместные уровни четырех интегралов (2.1) в шестимерном фазовом пространстве уравнений Эйлера-Пуассона. Всюду ниже рассматриваются только такие постоянные интегралов Ii и I2, при которых функции (2.1) независимы на E Ii, I2). В частности, исключаются случаи, когда = I2 = 0. Остальные постоянные образуют множество нулевой меры. Если интегралы (2.1) независимы, то — гладкое двумерное многообразие. На Е естественным образом возникает классическая динамическая система [6] Е, gE, сг), где — сужение на многообразие Е однопараметрической группы сдвигов по траекториям уравнений Эйлера-Пуассона,  [c.152]

Так как при выводе интеграла (49) на с1х, йу, йг мы не налагали ограничений, то постоянная в уравнении (50) будет универсальной. Интеграл Лагранжа в форме (50) будет совпадать с интегралом Бернулли (33), полученным для безвихревого стационарного движения идеальной жидкости. Интеграл Бернулли (32), полученный интегрированием уравнений Эйлера вдоль линии тока, отличается от интеграла Лагранжа, так как постоянная в интеграле (32) может быть различной для разных линий тока. Движение жидкости, при котором постоянная в интеграле Бернулли универсальна для всех линий тока, есть потенциальное движение. Пользуясь уравнениями (48), можно доказать очень важную теорему Лагранжа если для движущейся жидкости при действии сил, имеющих потенциальную функцию, в какой-нибудь момент времени существует потенциал скоростей, то течение будет потенциальным во все время движения. В самом деле, уравнения (48) можно записать в следующей форме  [c.280]


Вследствие постоянства величины / вектор а находится из соотношений (2.2). Квадратуры для 7 могут быть легко получены при помощи сфероконических координат на сфере Пуассона 7 = 1. Действительно, в выбранной системе координат постоянная площадей равна нулю, а гамильтониан в случае Эйлера совпадает с дополнительным интегралом задачи Неймана с нулевым потенциалом. Следовательно, в сфероконических координатах переменные разделяются и можно воспользоваться формулами (7.17) гл. 1 (см. подробно 7 гл. 1).  [c.98]

Примеры свободное вращение твердого тела и задача трех тел. Рассмотрим сначала задачу Эйлера о вращении твердого тела вокруг неподвижной точки по инерции (см. п. 2.4 гл. 1). Здесь Л1 = Г50(3) =50(3)X/ , группой симметрий О является группа вращений 50(3) ей соответствует пуассонов-ская алгебра первых интегралов, изоморфная алгебре Ли 50(3). Зафиксируем значение кинетического момента и рассмотрим интегральный уровень Мс=Рв<цз) Чс). Нетрудно показать, что при всех значениях с множество Мс является трехмерным многообразием, диффеоморфным пространству группы 50(3). Стационарной группой Ос является одномерная группа поворотов 50(2) твердого тела в неподвижном пространстве вокруг постоянного вектора кинетического момента. Приведенное фазовое пространство Л7е = 50(3)/50(2) диффеоморфно двумерной сфере.  [c.110]

Эти построения походят на те, какие дал Эйлер, чтобы определить вид струны в любой момент времени, исходя из ее начального вида, отвлекшись при этом от скоростей, сообщенных ей в начале движения. Следует, однако, отметить, что так как эти построения основаны только на функциях, представляющих интегралы уравнений в частных дифференциалах, то они не могут иметь более широкой области применения, чем то, какое допускает природа функций, будь то алгебраические функции или трансцендентные. А так как дифференциальное уравнение для всех точек струны и для всех моментов ее движения остается одним и тем же, то выражаемое им соотношение должно постоянно и равномерно сохраняться между переменными, в какой бы области они ни изменялись отсюда следует, что хотя произвольные функции сами пй себе имеют неопределенный вид, тем не менее, когда этот вид на известном промежутке задан начальным состоянием струны, то отсюда естественно можно сделать вывод, что эта форма должна оставаться одной и Toii же во всей области функции и что ее нельзя изменять с целью подчинить условиям, связанным с принятой неподвижностью концов струны.  [c.516]

Воспользуемся для решения этой вариационной задачи с интегралом f w s)ds и интегральным условием (3.46) f w s)ds = = onst, методом множителей Лагранжа для функции w t) Xw t) с постоянным множителем Л. Тогда получим решение уравнения Эйлера 2w t) + Л = О, откуда вытекает, что w = onst, Vt G [О, tp].  [c.99]

Но это указывает на тесную связь интеграла уравнения Эйлера для потенциального движения с частным интегралом этого уравнения вдоль линии тока, т. е. уравнением Бернулли, относительно которого было усгановлено, что и оно справедливо для всех точек жидкости, если тольк-о последняя вытекает из такой большой области, что существующие в этой области скорости практически можно считать равными нулю (тогда постоянная Бернулли одинакова для всех линий тока).  [c.113]

Общим интегралом этих уравнений как раз и являются уравнешш (1), где а, 6, с суть произвольные постоянные. Таким образом, метод Лагранжа дает больше сведений о кинематике потока, нежели метод Эйлера если исходить из метода Эйлера, то траектории частиц можно получить лишь после интегрирования системы дифференциальных уравнений, тогда как в методе Лагранжа траектории непосредственно даны. Но метод Лагранжа зато гораздо сложнее. В дальнейшем мы будем встречаться чаще с кинематическим описанием потока по методу Эйлера однако в некоторых вопросах, именно при изучении деформаций жидкой частицы, отдельных видов се движения, мы, по сути дела, будем применять метод Лагранжа.  [c.116]

Эти девять кинематических уравнений (они называются обобщенными уравнениями Пуассона) вместе с тремя динамическими уравнениями Эйлера (14.60) составляют полную систему дифференциальных уравнений движения ИСЗ относительно центра масс. В этих уравнениях 1х> 1у, г и ц — известные постоянные величины, R и со — в общем случае известные функции времени, определяемые из кеплерова движения центра масс спутника, Q . Р > Yft (k=, 2, 3) —искомые функции времени. Не останавливаясь на методах решения этих уравнений (в общем виде они решаются только для частных случаев), заметим, что шесть первых интегралов нам известны —это равенства (14.56).  [c.339]


Пользуясь предложением 1, укажем метрики на двумерной сфере, для которых уравнения геодезических допускают неприводимые интегралы 3-й и 4-й степени. С этой целью рассмотрим задачу о вращении тяжелого твердого тела с неподвижной точкой. Эта система с тремя степенями свободы инвариантна относительно группы вращений вокруг вертикали. Фиксируя нулевую постоянную соответствующего интеграла Нётер (интеграл площадей) и проводя факторизгщию по орбитам действия группы симметрий, сведем эту задачу к системе с двумя степенями свободы на фазовом пространстве 7 S . Гамильтониан имеет вид (6.1), где Г — гамильтониан приведенной задачи Эйлера, а V К — потенциальная энергия силы тяжести. Если выполнены условия Горячева — Чаплыгина или Ковалевской (см. 5 гл. П), то уравнения с гамильтонианом T+V допускают дополнительный интеграл соответственно третьей и четвертой степени по скоростям. Предложение 1 дает метрики на двумерной сфере с интегралами степени 3 и 4. При V = О эти интегралы приводимы. А. В. Болсинов и А. Т. Фоменко дали доказательство неприводимости интегралов Горячева — Чаплыгина и Ковалевской, основанное на глубоких идеях теории топологической эквивалентности интегрируемых гамильтоновых систем.  [c.404]

Замечание 8. При добавлении постоянного гиростатического момента вдоль оси динамической симметрии в (4.25) и (4.26) получаются случаи интегрируемости, соответствующие обобщенным случаям Яхьи и Сретенского в уравнениях Эйлера -Пуассона, интегралы для которых несложно получить из (4.23) при помощи процедуры поднятия, описанной в гл. 4.  [c.219]

ПОСТОЯННЫ на Ом (в отличие от интегралов tr (Ai )) и функционально независимы на Ом (см. [175]). Орбита Ом задается значениями интегралов tr(M ). Из предложенной Манаковым в [165] записи уравнения Эйлера в виде уравнения с независимым комплексным параметром g  [c.308]


Смотреть страницы где упоминается термин Эйлера интегралы постоянная : [c.253]    [c.107]    [c.189]    [c.117]    [c.296]    [c.71]    [c.65]    [c.534]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.5 , c.135 ]

Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.135 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.135 ]



ПОИСК



Постоянная Эйлера

Эйлер

Эйлера интегралы

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте